The Smart Grid communication infrastructure is commonly seen as a hierarchical network with three-tier architecture:
Access tier
The network should support real-time information flows between customer and energy management systems. In this tier, the Home Area Network (HAN) is applied to provide low-cost solutions for monitoring and control of electric devices deployed at customers’ premises. In the case of HAN gateways, these should be equipped with multiple radio interfaces to facilitate the integration of different devices. The access tier must also provide connectivity services for electric vehicles. For services that support Vehicle-to-Grid (V2G), wireless technologies seem to be the most appropriate choice, but some use cases have shown the need of different networking solutions.
Distribution tier
This tier of the communication network enables the state, data estimation and real-time control of the distribution grid. It interconnects the local area networks (i.e. Home Area Network (HAN)/Building Area Network (BAN)/Industrial Area Network (IAN)) with the smart grid communication backbone and provides the communication support to implement data management services to handle the large amount of data collected in the distribution grid. The distribution tier includes specialised networks to provide reliable communication to a large number of heterogeneous sensors and actuators, and to monitor and control power system equipment, Field Area Networks (FAN) or Neighborhood Area Networks (NAN).
Core tier
Here, a WAN network is used to create a high-capacity communication backbone capable of delivering a large amount of data collected by the FANs to remote control centers over long distances. There are several options for the WANs deployments such as all Internet Protocol (IP) core network or MultiProtocol Label Switching (MPLS) but, for electric utilities, a relevant option is the deployment of private WANs and to use public data networks to link them.
The selection of network type depends mainly on requirements like data rate, coverage range and latency.