

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grand agreement N°864283

Date : 31/03/2022
Author(s) : LUIS ALONSO MUÑOZ, JOSE ANTONIO RUIZ, JAIME CHEN, PIOTROWSKI KRZYSZTOF

Prototypes
implemented

Deliverable D5.5

D5.5 Prototypes implemented.

2

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Technical References

1 PU = Public

 PP = Restricted to other programme participants (including the Commission Services)

 RE = Restricted to a group specified by the consortium (including the Commission Services)

 CO = Confidential, only for members of the consortium (including the Commission Services)

Document history
V Date Beneficiary Author

0 20/09/2022 SOF, IHP Jaime Chen, Luis Alonso, Jose Antonio Ruiz,

Piotrowski Krzysztof

1 15/03/2022 SOF Javier Barbarán

Project Acronym ebalance-plus

Project Title
Energy balancing and resilience solutions to unlock the flexibility and

increase market options for distribution grid

Project Coordinator CEMOSA

Project Duration 42 months

Deliverable No. D5.5

Dissemination level 1 PU

Work Package WP5 Communication Platform and system integration

Task T5.5 Implementation of platform prototypes

Lead beneficiary SOF

Contributing

beneficiaries
IHP, SOF, CEM, AMP, UMA, REE, TPS, EMT, MGC, UNC, YNC, DTU, ENF

Due date of

deliverable
30 September 2022

Actual submission

date
21 December 2022

Reviewed 31 March 2023

D5.5 Prototypes implemented.

3

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Summary

Summary of Deliverable

The document describes the implementation of the prototypes that will be used in the
demosites planned to test the ebalance plus platform. The document focuses on the hardware
and software that is used in each of the prototype management units (MUs) deployed for each
of the demosites and on the devices that have been integrated in the ebalance plus platform.
Each management unit is an autonomous device (either physical or virtualized) that runs the
ebalance plus platform composed of the data exchange middleware, several adapters (used
to integrate external devices within the ebalance plus system) and a set of algorithms. The
document explains each of the parts previously mentioned focusing on the technical details
that make the ebalance plus system capable of exchanging and collecting information from
different parts of the system, with a strong emphasis on the demosites.

Disclaimer
This publication reflects the authors’ view only and the European Commission is not
responsible for any use that may be made of the information it contains

D5.5 Prototypes implemented.

4

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Table of Contents
TECHNICAL REFERENCES .. 2

DOCUMENT HISTORY ... 2

SUMMARY .. 3

SUMMARY OF DELIVERABLE ... 3

DISCLAIMER .. 3

TABLE OF CONTENTS .. 4

1 INTRODUCTION ... 7

2 THE EBALANCE-PLUS ARCHITECTURE ... 8

3 MANAGEMENT UNITS ... 9

3.1 HARDWARE AND VIRTUALIZATION .. 9
3.2 SOFTWARE .. 12
3.3 TOOLS AND MANAGEMENT .. 13

4 EBALANCEPLUS SOFTWARE .. 15

4.1 DATA EXCHANGE MIDDLEWARE ... 15
4.2 ADAPTER MODULES ... 16

5 DEMO SITE PROTOTYPE OVERVIEW .. 34

5.1 UMA ... 34
5.2 UNC ... 35
5.3 JUNIA .. 36
5.4 DTU ... 37
5.5 IN-LAB DEMO ... 37

6 CONCLUSIONS .. 39

REFERENCES .. 40

D5.5 Prototypes implemented.

5

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Table of tables

Table 3-2. Devices general information. .. 9
Table 4-1 Generic adapters ... 16
Table 4-2 UMA: Loxone weather station variables ... 17
Table 4-3 UMA: Loxone building status variables .. 17
Table 4-4 UMA: Loxone setpoints ... 18
Table 4-5 UMA: EM210 variables .. 18
Table 4-6 UMA: WISE variables .. 19
Table 4-7 UMA: AMPERE Smart storage parameters ... 20
Table 4-8 UMA: Openweather parameters .. 20
Table 4-9 UMA: Magnum cap EV charger parameters .. 21
Table 4-10 UMA: TPS inverter variables ... 22
Table 4-11 UMA: TPS BESS variables .. 22
Table 4-12 UMA: TPS DC/DC converter variables .. 22
Table 4-13 UMA: PV1000A variables .. 25
Table 4-14 UNC: smart meter parameters ... 26
Table 4-15 UNC: Office and residential PV inverter parameters .. 27
Table 4-16 UNC: Chiodo2 smart meter parameters ... 27
Table 4-17 UNC: Battery nano grid values .. 28
Table 4-18 UNC: Nano grid 1 parameters ... 28
Table 4-19 UNC: Nano grid 2 parameters ... 29
Table 4-20 UNC: Inverter Fronius/PV plant parameters ... 29
Table 4-21 JUNIA: smart meter readings... 30
Table 4-22 JUNIA: PV inverter variables ... 31
Table 4-23 JUNIA: Hot water consumption variable .. 31
Table 4-24 JUNIA: Aurion class reservation software variables ... 31
Table 4-25 JUNIA: battery variables .. 32
Table 4-26 DTU monitoring variable .. 33

Table of figures
Figure 2.1 Example of the ebalance-plus architecture ... 8
Figure 3.1 Quieter2Q device. ... 10
Figure 3.2 Raspberry PI 4B board. .. 11
Figure 3.3 Beaglebone Black board. .. 11
Figure 3.4 Installer screenshots ... 14
Figure 4.1 Admin GUI .. 15
Figure 4.2 JUNIA demo site buildings .. 30
Figure 4.3 DTU heat pump diagram .. 33
Figure 5.1 UMA: Ada Byron and Psychology faculty connectivity scheme 34
Figure 5.2 UMA: Sport centre and Computing science faculty connectivity scheme 34
Figure 5.3 UNC: Connectivity scheme of the Cubo residential buildings 35
Figure 5.4 UNC: Connectivity scheme of Monaci residential buildings 36
Figure 5.5 UNC: Connectivity scheme of Mega centrale and Chiodo2 building 36
Figure 5.6 JUNIA: connectivity scheme ... 37
Figure 5.7 DTU: connectivity scheme .. 37
Figure 5.8 In-Lab: connectivity scheme ... 38

D5.5 Prototypes implemented.

6

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

List of Abbreviations

Abbreviations Definitions
CMU Customer Management Unit
DER Distributed Energy Resources
DERMU Distributed Energy Resources Management Unit
DMU Device Management Unit
LVGMU Low Voltage Grid Management Unit
MU Management Unit
MVGMU Medium Voltage Grid Management Unit
SG Smart Grid
TLGMU Top Level Grid Management Unit

D5.5 Prototypes implemented.

7

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

1 Introduction
In task 5.5, the prototypes of the communication platform have been developed. The
prototypes use different techniques such as in-lab deployment, virtualization, or containers and
will be used in the final deployment in the demonstrators. Fog and cloud technologies have
been chosen to be used in selected MUs to test these novel technologies to reduce latency
and communication. In the context of this task and this deliverable the term prototype refers
both to a development-phase device used to test the system before its deployment and to the
final device that will be deployed at each demo site.

The ebalance-plus project proposes a hierarchical structure of MUs that coordinate among
themselves to improve the performance of the smart grid. This means that the ebalance plus
system does not follow the typical centralized approach. On the contrary, it relies on
autonomous devices called MUs that operate together. In simple terms, each MU runs an
instance of the data exchange middleware and several adapters (described in [1]) and possibly
one or more algorithms (described in WP4).

The aim of this deliverable is to provide the technical details about the different MUs that will
be finally deployed in the demo sites. Section 2 presents an overview of the ebalance-plus
architecture emphasizing the relationship between the different MUs. Section 3 presents the
technical features of the different models of MUs that are being developed as part of this
project. Section 4 focuses on the ebalance plus platform and how it is installed in each
prototype. Section 5 describes the devices integrated for each demo site. Section 6 closes the
document presenting the conclusions.

D5.5 Prototypes implemented.

8

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

2 The ebalance-plus architecture

Figure 2.1 Example of the ebalance-plus architecture

An example ebalance-plus architecture is presented in Figure 2.1. The architecture is divided
in several layers which in the example are located at a primary substation, secondary
substation, and customer premises. Each layer contains at least one management unit that
utilizes an instance of the middleware server – our distributed dataspace software component.
These layers correspond to different levels of a tree structure that allows MUs to organize
themselves hierarchically to exchange information. Ebalanceplus is therefore a distributed
system which can store information at each level and MU independently. This distributed
approach and the software necessary to support it, called the data exchange middleware, are
some of the novel features of the proposed system which has already been described in [1].
The number of layers and MUs in a deployment can be tailored to the specific needs of the
demo site.
Three main types of information exchange take place in the ebalance plus system. The first
one is the communication between different MUs. This communication is performed by the
data exchange middleware, a software layer that takes care of communication between MUs
and information storage. The next interaction takes place between external devices (such as
REST APIs, Modbus devices, etc.) and a single instance of a middleware located in a specific
MU. This interaction is handled by a given adapter as described also in [1] and depicted as
device management unit in the picture (DMU). Finally, there are algorithms that use the
information stored in the middleware instances to achieve a given goal, such as using the
available flexibility in the grid to optimize the performance. A general overview of how this
communication works has been already presented in D5.3 [1]. This document focuses on the
MU hardware and software necessary to facilitate such communication.

D5.5 Prototypes implemented.

9

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

3 Management units
A management unit is the basic building block in the ebalance plus architecture. It collects and
stores information, it provides means to communicate with other MUs and it offers a platform
where algorithms can run. Smart grids are complex system with different requirements so it is
essential that the ebalance plus code can run in a high variety of devices. In general, Java is
the main programming language used to code the ebalance plus system. This allows us to run
the code in a high number of devices, including embedded devices, virtualized environments
(such us the ebalance plus fog server deployed at University of Málaga which is one of the
demo sites) or powerful servers. In fact, the decision about which MU is going to be used is
given by each demo site requirement. Also, different approaches have been chosen to be
tested in the demo sites to validate the ebalance plus architecture and evaluate the
performance of different MUs.
This section describes the technical details of the MUs that have been developed as prototypes
for the ebalance plus project. Section 3.1 describes the hardware of the different MUs that will
be deployed. Section 3.2 presents the operating system and software that run on the MUs.
Finally, Section 3.3 describes additional tools and scripts that have been developed to simplify
the task of managing the MUs.

3.1 Hardware and virtualization

The proposed ebalance-plus architecture is designed, as seen in Section 2, in layers following
a tree structure that allows MUs to exchange information in a hierarchically and organized way.
Consequently, it is likely that different layers of the structure have different requirements,
depending on how much information the device must manage. This section shows and details
all the devices tested, the selection procedure, and why some tested devices were rejected.

3.1.1 Physical units

For each physical device chosen to implement the management units, a search, test and
dismiss procedure was performed. As explained in previous sections, each position in the
hierarchy of the ebalance-plus system will possibly have different power, flexibility and costs
requirements that influences the final decision.
Table 3-1 lists a general view of the final devices that were selected to implement the
architecture of the demonstrators.

Table 3-1. Devices general information.

MU TYPE SYSTEM

TYPE

MODEL MEMORY DISK

SPACE

OS

CMU (Softcrits) Mini PC Quieter 2q 8GB ~100GB Ubuntu
20.04.4

LTS

CMU (Reengen) Embedded Raspberry Pi

4 Model B

2GB ~20GB Raspbian
10 x86

LVGMU (Emtech) Embedded Beaglebone

Black

512MB ~64GB Debian 10
x86

DERMU (Emtech) Embedded Beaglebone

Black

512MB ~64GB Debian 10
x86

MVGMU (Emtech) Embedded Beaglebone

Black

512MB ~64GB Debian 10
x86

D5.5 Prototypes implemented.

10

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

TLGMU (Virtualized) UMA Fog

server

(container)

- - - Linux

3.1.1.1 Softcrits CMU

This type of management unit is going to be deployed in the last layer in the hierarchical
structure of the demo site scenarios. It will launch several modules (adapters) in parallel and
will save all data generated by the modules’ readings. Therefore, two main characteristics are
required: maximize RAM memory for devices with multiple java executions running at the same
time, and a large disk space available to save the data. The lack of RAM memory is one of the
main reasons why embedded devices were discarded. In this sense, Nvidia Jetson platforms
includes sufficient RAM memory, and even a GPU is included to improve the execution of AI
dependent applications, what may be useful for ebalance-plus algorithm needs. The main
disadvantage of these devices is the availability in the market, making impossible to obtain
after GPU stock restrictions. At last, Mini PC devices was selected mainly because of their
flexibility, limited power consumption, great computing capabilities and great prices and
availability in the market.
This specific model has a great disk space, good communications options with Ethernet and
Wi-Fi, and does not require great heat dissipation needs. These units will be used as CMU for
the University of Málaga demo site.

Figure 3.1 Quieter2Q device.

3.1.1.2 Reengen CMU

For this case use, Raspberry Pi was selected as hardware device. This type of embedded
devices is a great choice for scenarios where low computing needs are required, a big amount
of RAM memory is not needed, and very reduced price is the target. In addition, Raspberry
offers a multitude of libraries, sensors and expansion cards that can be useful if readings from
physical sensors must be done by the management unit. The partner Reengen provides a
Raspberry Pi-based MU that they already sell as a commercial product. These units will be
used as CMU for all the demo sites except for the one at University of Málaga (the one that
requires more external devices to be integrated).

D5.5 Prototypes implemented.

11

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Figure 3.2 Raspberry PI 4B board.

3.1.1.3 EMTECH LVGMU/DERMU/MVGMU

At last, LVGMU, DERMU and MVGMU use the same device to be the core of the computing
hardware: Beaglebone Black. It is part of the single board computers family, that stands out
among other options because of its reliability. Even when Raspberry or other devices are more
powerful, have more memory, if the scenario does not require higher speeds or memory
requisites, this type of board is known for its reliability in terms of failures or shutdowns. In the
scenarios that will be used it’s critical to minimize failures on the system, because they will be
implement higher positions of the ebalance-plus demo sites hierarchy. The device is provided
by EMTECH which has developed a Beaglebone-black commercial product shown in Figure
3.3. This device uses the expansion pins, in a custom developed motherboard that includes
all the electronics to read from external sensors if needed. These units will be used as LVGMU,
DERMU and MVGMU in all the demo sites. For more detail regarding each of the device refer
to [3].

Figure 3.3 Beaglebone Black board.

3.1.2 Virtualized units
The Fog computing infrastructure at UMA provides a HW/SW environment for the development
of applications with low latency requirements. Among the HW features, its 364 cores provided
by Intel Xeon SP G6230R processors (26 cores, 2.1GHz), 448GB of graphics memory
provided by NVIDIA V100 cards (5120 Cuda cores, 32GB RAM), 384GB of RAM and a total
of 12.8TB of storage stand out. To sum up, the HW infrastructure comprise:

• 7 Fog nodes with 104 cores, 2 Nvidia NVIDIA V100 cards (5120 Cuda cores, 32GB

RAM), and 384GB of RAM.

• 2 Edge nodes with an Intel Xeon D2187NT processor (16 cores, 2GHz), an Nvidia

T4 graphics card and its support for Wi-Fi and LTE/4G wireless communications.

• Total of 364 CPU cores, 448GB of GPU, 2688GB of RAM and 12.8TB of storage.

The virtualized infrastructure provides a production environment for the development of critical

applications on top of Docker containers. The orchestration tool to deploy and manage

containers and their resources is Kubernetes (K8s), an open-source orchestration platform for

containers-based applications with worldwide adoption. The developed applications can make

use of GPU acceleration for processing-intensive techniques such as machine learning. This

infrastructure has been chosen because the adoption of containers is a lightweight method to

create virtual environments. They can be easily deployed, and don’t comprise an entire

operative system, only the relevant application and its dependencies are bundled into a

D5.5 Prototypes implemented.

12

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

package, comprising a good solution for the portability of applications. Moreover, the

capabilities of the infrastructure allow the deployment of the whole ebalance plus software

stack and further applications which make intensive processing like flexibility algorithms.

3.2 Software

The setup of the device for the ebalance-plus functions is simple, but it must be done carefully,
essentially because different versions of packages or operating systems may not work properly
with the dependencies and executions of ebalance-plus.
This section summarizes the main tasks needed to achieve before proceeding with the
installation described in Section 3.3.

3.2.1 Operating System Installation
Different MUs need different specific procedures, but in general terms the procedure to install
the operating system is similar:

1. Download the operating system image file.

2. Write the image into a SD card (Raspberry, Beaglebone, etc) or into an USB

stick (Mini PC) using a OS flasher application, for example BalenaEtcher or

Win32DiskImager

3. Insert the memory SD or stick in the device, power on, and follow instructions

to finish the installation.

Since the ebalanceplus system have been mainly implemented in Java and supports Python
the main operating systems are supported. However, to reuse most of the procedures and
associated code, Linux has been the main choice for all the MUs. Regarding the Linux version,
there are no specific requirements.

3.2.2 Network
The device needs a stable internet connection as well as permission to connect through
several ports. Therefore, the installer of the device must ensure with network administrator that
the following requirements are met:

1. Stable internet connection

2. Static Ip assignment

3. Open main ports (it may differ from config chosen in each module):

a. Port 22: SSH connections

b. Ports 20100 to 20105 (default): Middleware (the middleware uses 6

different ports for different purposes such as inter-MU connection,

adminGUI server, polling server, etc.

3.2.3 Date and time
Management units must ensure date and time info is precisely set since data read from devices
and written in database requires an internal timestamp. To maintain a synchronization, NTP
(network time protocol) is used.

3.2.4 Dependencies
Execution of the scripts and programs in the management units requires a sort of external
dependencies that must be installed before the launch of the services.
Two types of dependencies must be listed in this section: those the dependencies which must
be installed by the administrator manually; and the dependencies that the installer script will
setup automatically.
The manual dependencies are:

1. Python3

2. Tar files application. It is usually included in Linux distributions.

3. Apt application. It is usually included in Linux distributions.

4. Bash terminal. It is usually included in Linux distributions.

5. [Optional] OpenSSH or any other server-side SSH implementation.

D5.5 Prototypes implemented.

13

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

6. [Optional] Any remote desktop application if needed.

The auto installed dependencies are:
1. Python3-pip: Python3 packet manager.

2. ConfigParser: Python3 package needed to easily read config files.

3. Ppp: OS Package that enables VPN interfaces creation. OpenFortiVPN

dependency.

4. OpenfortiVPN: Package that install OpenFort application, a VPN connection

manager used for the JUNIA demo site.

5. OpenSSH(Server side): OS Package needed to transfer files. It should be

installed manually if needed to remotely transfer the files. If it’s not installed, it

will be downloaded and setup.

6. Nano: Text editor used for installer to modify text in multi-instance config files.

3.3 Tools and management

To ease the interaction between user and management units, various utilities were developed.
In this section, how they work, and how to use them is described in detail.

3.3.1 SSH Access
SSH connections allow the user to control and command the machine and transferring files. It
opens a terminal connection, so the user can execute commands remotely. OpenSSH Server
must be installed in the target machine by the installer of the device if remote access is needed.
Once the device has installed and launched SSH Server service, it must be checked that port
22 is allowed to be used in the network connected to the management unit.
Lastly, the user should connect the MU using a software that manages SSH connections. For
example, Putty is a free-to-use software that handles the connection and lets the user save
connection credentials.

3.3.2 Watchdog
Watchdog service is an external Python program developed to monitor and check the state of
middleware, modules, and system processes. If any module or middleware suddenly fails,
stops, or blocks, the watchdog will stop and reload it. In addition, it reset a specific timer
included in operating system so if by any circumstances, the own Python program fails and
the timer countdown reaches zero, the system will reboot automatically.

3.3.3 Installer script
The target of the project in terms of the installation procedure was to have a script that can
handle every type of device from the hardware structure, automatically download and install
dependencies, and helps the user to easily install middleware and adapter modules.
The developed script collects the needed information from the user interactively, as shown in
Figure 3.4 and detect which type of device is being installed.
The steps to complete the procedure are:
1. Insert MU installation ID (the name of the device). It should be unique for every

device, since it will be used as to uniquely identify each unit.

2. Select from list which adapter modules need to be installed.

a. If no module is selected, only middleware will be installed.

b. If more than one instance of any module must be installed, it should be

selected in the prompt.

3. [OPTIONAL] If multi-instance is selected, a second list with modules chosen in step

2 will appear. User should select which adapter modules will be configured as multi-

instance, and how many instances are needed.

D5.5 Prototypes implemented.

14

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

a. Text editor will be launched for config files that must be edited for each

instance of each module.

4. User is asked if middleware should be installed as a service launched at bootup.

5. User is asked if watchdog should be installed as a service launched at bootup

6. User is asked if adapter modules should be installed as a service launched at bootup

Figure 3.4 Installer screenshots

3.3.4 Stop and uninstaller scripts
In addition, in installer folders, two simple scripts are included. The first stops the middleware,
adapter modules, and closes watchdog functionality, avoiding system resets when stopped. It
is usually launched when reinstalling, upgrading, or fixing a module.
On the other side, the uninstaller script removes from the device every service, file and folders
that create ebalanceplus implementation code.

D5.5 Prototypes implemented.

15

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

4 Ebalanceplus software
Section 4 describes the operating system and basic libraries that each MU uses. On top of this
common hardware and software configuration the ebalance plus system needs to be installed
in these units. There are two main entities that comprise the system: the data exchange
middleware and the adapters. A detailed description of these two entities can be found in [1].

4.1 Data exchange middleware

The ebalance-plus system uses a data-centric middleware framework that allows the
participants to communicate, exchange and store information. The framework stores data in
tuple space structures which allows to implement a variety of logical structures that can contain
all the information necessary to identify a value, its description, source, and time of creation.
The tuple space is accessed by creating variables that can be written, read, or removed. A
variable is the entity that holds historical data for related values. For example, a variable named
weather can store historical information about temperature and humidity.
Variable management is the basic form of communication between a program and a local or
remote instance of the middleware. In the context of ebalance plus a single instance of the
middleware is installed in each MU. This means that each MU can locally store data. Programs
accessing those units can either be installed within the MU itself or in a remote server as it is
the case for programs running in the fog server, as explained in Section 3.1.2.
The middleware also provides a handy administration GUI, called adminGUI, that can be used
to query the middleware information and for simple management tasks. Figure 4.1 shows a
screenshot of the adminGUI.

Figure 4.1 Admin GUI

The middleware is installed as a systemd service, so the process is launched, controlled, and
supervised by the system (Linux and service manager), offering a wide variety of tools to
manage, diagnose, and logging the middleware execution. In addition, the middleware is
automatically launched by systemd after the network is available. This kind of installations
makes the process more robust against possible energy shutdowns, or any circumstances that
restart the operating system.
The middleware installation is done for every management unit using an installer script that
inspect the device, download architecture-specific packages, and transfers and create all the
files and folders that middleware execution is going to need. All the requirements for execution
are detected and installed automatically by the installer script. The procedure in detail is
explained in detail in 3.3 Tools and management.

D5.5 Prototypes implemented.

16

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

4.2 Adapter modules

There is a high number of devices whose data is interesting for the algorithms that run on the
ebalance plus system. The adapter is an additional layer of abstraction used to convert
information from all these external communication protocols to data that the middleware can
understand and process. In ebalance plus, this layer of abstraction is provided by adapter
modules. The adapter module communicates with a specific device and handles the integration
with the data exchange middleware. The main goal of the adapter is to monitor an external
device and get the relevant information to store it in the middleware. Also, when command
requests are detected in the middleware, the adapter transforms the requests into commands
that the device external can understand. As already presented in [1] a set of generic adapters
was developed to ease the implementation of specific adapters for each demo site. Table 4-1
summarizes the generic adapters that were implemented.

Table 4-1 Generic adapters

Adapter
Communicati
on protocol

Comments

Modbus adapter Modbus
TCP/IP

It maps a middleware variable to a set of Modbus
registers (each column of a variable is a Modbus
register)

JDBC adapter Generic
relational
database
using JDBC

It maps a middleware variable to a database table
(each column of a variable is a column of a table)

REST API adapter HTTP-based
REST API

Each REST API endpoint is mapped to a
middleware variable

Websocket adapter Websocket Handles the websocket connection and queries
information but the mapping is left to the
corresponding implementation (classes extending
this generic class)

These generic adapters have been used to implement a set of adapters for each of the demo
site planned in the project (See [2]).
Adapter modules are executed in the management units in a similar way as middleware. All
the functions and classes that implements the module is built in a .jar file. As a result,
transferring, installation and execution is simpler to setup and automatize. Jar file is executed
and monitored using a Linux service managed by systemd, that offers some advantages
explained in 4.1. Specifically, after the system boots up, middleware is first launched. After an
initial delay, each module is sequentially launched, giving time to the module to start, acquire
its first data, communicate, and initialize with middleware before the next module is launched.
This kind of launch installation is done by the same installer script that installs middleware. To
setup the installation, the user must select which modules should be installed from the
available module list shown in the installer. If the MU needs to deploy multiple instances of a
module, the option must be selected and modify each instance config file to avoid collisions in
variables or instances names that should be unique. Each instance will be installed and
launched as independent services, and their data saved as independent variables. The
installation process is explained in detail in section 3.3

The following sections details the protocol and features of each of the adapters grouped by
demo site focusing on the description of the information they collect and the setpoints that are
available.

D5.5 Prototypes implemented.

17

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

4.2.1 UMA

4.2.1.1 LOXONE
The Loxone system connects all components in a smart building. All devices run to the central
controller, the Miniserver, so they can communicate and become automated together. At Ada
Byron building at University of Málaga the system has two miniservers, one in each building
module connected to a router. And we have information and control over two devices:

• Air Handling Unit: Oversees managing the proper ventilation of the interior with outside

air

• Weather Station: In this device we have information about brightness, wind speed,

temperature, rain, wind warning and sunshine

The total number of components installed at the terrace at the Ada Byron building are:
• Miniserver (2 units)
• Wattmeters (2 units)
• Air Handling Unit, AHU (2 units)
• Heating pump (1 unit)
• Weather station (1 unit)

The Loxone system offers a WebSocket communication protocol that is connection-oriented
and best suited for monitoring web applications. In fact, the manufacturer monitoring app uses
this API to show the information. In our case, to avoid having a persistent connection to the
system, the adapter periodically connects, it retrieves the information and it disconnect.
In the Ada Byron building the system has the following functions:

• Conditioning system energy

• Consumption monitoring

• Weather condition monitoring

• Control the speed fans of AHU

• Switching ON/OFF the Heating pumps

• Management of filtration and control of quality of the air

• Control of the air temperature that regulates the air conditioning system
• Relative humidity monitoring

The information is periodically queried, and historical data is sent to the middleware database.
The current polling period, for the variables shown in Table 4-2 and Table 4-3 is once per hour.

Table 4-2 UMA: Loxone weather station variables

VARIABLE DESCRIPTION UNIT
read_timestamp Unix timestamp String date UTC

weatherType numeric weather type enumeration value (see

weatherTypeTexts)

Enum

windDirection Wind direction º

solarRadiation Solar radiation

relativeHumidity Relative humidity %

temperature Temperature ºC

perceivedTemperature Perceived temperature ºC

dewPoint Drew point º

precipitation Precipitation mm

windSpeed Wind sped km/h

barometicPressure Barometric pressure hPa

Table 4-3 UMA: Loxone building status variables

VARIABLE DESCRIPTION UNIT
uma_loxone_clima_mode Climate mode 0 -> auto 1 -> cold 2-> heat 0.0

D5.5 Prototypes implemented.

18

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

uma_loxone_heat_pump_switch Heat pump status 1.0 -> on 0.0 -> off 1.0

uma_loxone_uta_switch_a UTA status 1.0 -> on 0.0 -> off 1.0

uma_loxone_uta_switch_b UTA status 1.0 -> on 0.0 -> off 1.0

uma_loxone_heating_threshold Heating threshold (degrees celsius) 17 ºC

uma_loxone_max_water_temperature Max. Summer temperature (degrees
Celsius)

20 ºC

uma_loxone_min_water_temperature Min. Winter temperature (degrees Celsius) 31 ºC

uma_loxone_speed_fans_mod_b Fan speed module A (long) [0-10] 8

uma_loxone_speed_fans_mod_a Fan speed module B (long) [0-10] 8

The setpoints shown in Table 4-4 allows information in the Loxone system to be changed by
the algorithms.

Table 4-4 UMA: Loxone setpoints

Setpoints Description Values Example

SETPOINT_B Setpoint module B – objective
temperature

Temperature value 18

SETPOINT_A Setpoint module A – objective
temperature

Temperature value 18

MAX_TEMP_SUMMER Max. summer temperature Temperature value 20

MIN_TEMP_WINTER Min. winter temperature Temperature value 31

FAN_SPEED_A Fan speed module a [0-10] 8

FAN_SPEED_B Fan speed module b [0-10] 8

UMBRAL_CALF Heating threshold (degree
Celsius)

Temperature value 17

FRIO_CALOR_MAN Climate mode 0 -> auto 1 -> cold 2 -> heat 0

HEAT_PUMP Turn on/off the heat pump true/false true

4.2.1.2 EM210
The EM210 by Carlos Gavazzi is an intelligent three-phase energy meter. The meter is
connected to the general electrical Switchboard. A MODBUS RTU – TCP/IP gateway is
employed to allow the access by MODBUS TCP/IP, and it is connected to the ebalance plus
subnet. The meter is installed in the room S2 at the parking of Ada Byron building.
The system is used to:

• Reading and monitoring the Ada Byron building energy consumption
• Collection of historical data

The current polling period is once per five minutes. Historical data, depicted in Table 4-5, is
stored in the middleware.

Table 4-5 UMA: EM210 variables

VARIABLE DESCRIPTION
read_timestamp Timestamp

v_l1_n V L1-N Phase Voltage, between phase 1- neutral

v_l2_n V L2-N Phase Voltage, between phase 2- neutral

v_l3_n V L3-N Phase Voltage, between phase 3- neutral

v_l1_l2_n V L1-L2 Voltage line to line (between phase 1- phase 2)

v_l2_l3_n V L2-L3

v_l3_l1_n V L3-L1

a_l1 A L1 current phase 1

a_l2 A L3

a_l3 A L3

w_l1 W L1 power in phase 1
w_l2 W L2

w_l3 W L3

va_l1 VA L1 Apparent power phase 1

va_l2 VA L2

va_l3 VA L3

D5.5 Prototypes implemented.

19

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

var_l1 VAR L1 Reactive power phase 1

var_l2 VAR L2

var_l3 VAR L3

v_l_n_sum V L-N SUM Phase Voltage

v_l_l_sum V L-L SUM Voltage line to line

w_sum W SUM Active power

va_sum VA SUM Apparent power

var_sum VAR SUM Reactive power

pf_l1 Power Factor L1

pf_l2 Power Factor L2

pf_l3 Power Factor L3

pf_sum Power factor

phase_sequence Phase sequence

hz Frequency of electric power transmission

kwh_consumed_tot kWh (+) TOT (Active energy consumed)

kvarh_sonsumed_tot kvarh (+) TOT (Reactive energy consumed)

kwh_generated_tot kWh (-) TOT (Active energy generated)

4.2.1.3 WISE
This system, developed in a previous project, is used for management of educational centres
in aspects such as sustainability, safety, hygiene, control, intelligence and traceability of people
and goods. All this, through various actions enabled by the platform such as optimising the
closing/opening of windows, guaranteeing the quality of the air above or preventing the risk of
contagion by facilitating, for example, contact tracing. This already existing system has been
used at UMA demo site to obtain weather station and air quality variables.

The sensors are installed in the room A.0.11 at Ada Byron building at University of Málaga.
The sensor devices collect values and send them to the WISE server. WISE system offers a
REST API with an endpoint for querying the data gathered. The values stored are presented
in Table 4-6. The current polling period is one time per five minutes.

Table 4-6 UMA: WISE variables

VARIABLE DESCRIPTION UNIT
read_timestamp Timestamp String date UTC

temperature Temperature in the room ºC

co2 Level of co2 in the room %

noise Noise in the room ppm

barometric_ pressure Barometric pressure in the room hPa

humidity Humidity in the room %

4.2.1.4 AMPERE
Ampere is a smart storage system of the energy produced by solar PV systems. The system
wil be used in UMA, UNC demo sites. In the UMA demo site, it is installed in the room sb5 in
the parking at Ada Byron building at University of Málaga.
The components installed at the Ada Byron building are:

• 120kWH battery. In two racks of Ketter. The Ketter Power Charge 60 kWh is a battery

for a high-power lithium-ion phosphate system with intelligent control technology.

• 100 kW inverter (Ingeteam 100TL). A three-phase battery inverter without transformer

The system has the following functions:
• Energy management
• Power control
• Performance optimization
• Data monitoring and representation
• Allows to make charging schedules for the batteries

D5.5 Prototypes implemented.

20

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Also, the Smart Energy Management device integrated in the storage system provides
information about the installation that is sent to the AMPERE Cloud. The information is
provided in the cloud via a REST API that it has been used by our adapter to collect the
parameters shown in Table 4-7.

Table 4-7 UMA: AMPERE Smart storage parameters

VARIABLE DESCRIPTION UNIT
timestamp Unix timestamp String date UTC

batterySoc Battery charge level %

batteryPower Baterry power kW (average)

batteryTemperature Battery temperature Cº (instant)

inverterActivePowerPh1 Active battery power on phase 1 kW (average)

inverterActivePowerPh2 Active battery power on phase 2 kW (average)

inverterActivePowerPh3 Active battery power on phase 3 kW (average)

meterActivePowerPh1 Active power of the meter on phase 1 kW (average)

meterActivePowerPh2 Active power of the meter on phase 2 kW (average)

meterActivePowerPh3 Active power of the meter on phase 3 kW (average)

The current polling period is once per fifteen minutes.
In addition, the adapter allows the smart battery schedule to be changed from the middleware.

4.2.1.5 OPENWEATHER
OpenWeather provides hyperlocal minute forecast, historical data, current state, and from

short-term to annual and forecasted weather data. All data is available via a REST API. In our

scenario, the information is checked once per minute and collected in the middleware. The

information is used at UMA for the training of the different prediction models. After a first

evaluation, it has been possible to observe the importance of the climate for the production of

energy by solar panels or for forecasting future consumption values of the buildings. Moreover,

these OpenWeather records will be studied to observe their correlation with the corresponding

prediction models of other components of the system not yet developed. The weather values

stored in the middleware are shown in Table 4-8.

Table 4-8 UMA: Openweather parameters

VARIABLE DESCRIPTION UNIT
datetime Timestamp String date UTC

weather Group of weather parameters (Rain, Snow, Extreme etc.) String

temp_min Minimum temperature Cº

temp_max Maximum temperature Cº

pressure Atmospheric pressure (on the sea level if there is no

sea_level or grnd_level data)

hPa

humidity Humidity %

wind Wind speed meter/sec

The current polling period is once per minute.

4.2.1.6 MCG EV CHARGER
MAGNUM CAP, one of the partners of the consortium, has developed EV chargers that where
the vehicles can operate like huge storehouses of renewable energy. Also, it is possible that
the energy produced by the solar panels is used to charge the vehicle anytime.
Five chargers will be installed in the parking of Ada Byron building. Each charger can load and
unload two vehicles simultaneously and has bidirectional charging, using the energy provided
by the PV panels that will be installed near to the chargers.
The information and the communication with the chargers is provided via the Modbus TCP/IP
protocol. The EV charger provides parameters about the charger and the current transaction
and allows commands to be sent by writing specific Modbus registers. The adapter that has

D5.5 Prototypes implemented.

21

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

been implemented in ebalance plus periodically polls and reads read-only registers and allows
commands to be sent from the middleware to write-only registers. The read/write parameters
provided by the EV charger are shown in Table 4-9.

Table 4-9 UMA: Magnum cap EV charger parameters

VARIABLE DESCRIPTION
read_timestamp Timestamp

status_code Gives information about charger’s operation mode

present_dc_voltage Output DC voltage

present_dc_power Output DC power

dc_charged_energy Session DC charged energy

dc_discharged_energy Session DC discharged energy

time_to_end Remaining transactions time

present_soc Actual state of charge

start_button Indicates if start button is active (1 inactive 0 active)

ac_energy_charged Total charged energy, AC side

ac_discharded_energy Total discharged energy, AC side

ac_power Present AC power

ac_power_timestamp Timestamp of the power reading

Max_charge_current EVSE max charge current

Max_discharge_current EVSE max discharge current

max_charge_voltage EVSE max voltage

max_charge_power EVSE max charge power

chademo_version EVSE CHAdeMO version

v2h_version EVSE V2H version

epo_button Informs if emergency button is pressed (0 not pressed 1 pressed)

vehicle_present Informs if there is a vehicle connected to the charger (0 no vehicle connected

1 vehicle connected)

ev_min_charge_current Vehicle minimum charge current

ev_max_charge_current Vehicle maximum charge current

ev_max_battert_voltage Vehicle maximum battery voltage

ev_target_battery_voltage Vehicle target battery voltage

ev_min_discharge_voltage Vehicle minimum discharge voltage

ev_min_soc Vehicle minimum SOC

ev_max_soc Vehicle maximum SOC

vehicle_chademo_version Vehicle Chademo version

vehicle_v2h_version Vehicle V2H version

4.2.1.7 TPS INVERTER
TPS provides a MIMO Inverter that connects the AC grid, the PV canopies, battery racks and
EV chargers to the common DC link. The MIMO inverter consists of a 125kVA GTI (inverter),
a 70kW unidirectional DC/DC converter for PV canopies, a 70kW bidirectional DC/DC
converter for Li-ion batteries and an AC and DC switchgear. The MIMO uses modern SiC
(Silicon Carbide) semiconductor devices that have very low losses at high switching
frequencies.
The system has the following functions:

• Bidirectional power conversion between the grid and the DC-Link.
• Reactive power compensation.
• Phase imbalance improvement.

The information and the communication with TPS Inverter system is provided via Modbus
TCP/IP communication protocol. More specifically, in terms of communication, The TPS
system is composed of three different Modbus slaves which need to be synchronized: GTI,
DC/DC converter and the BMS. To synchronize these systems a controller, called the TPS
controller, has been developed using Java. The TPS controller is a process that runs
indefinitely and synchronizes readings between the different subsystems:

1. Periodically send heartbeat messages to each subsystem

D5.5 Prototypes implemented.

22

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

2. Periodically send information about the BMS to the DC/DC converter

3. Handle connection/disconnection messages and errors

The TPS Inverters will be installed in the parking of Ada Byron building. In addition to the
TPS controller, the usual adapter is deployed, whose function is to periodically read
information (see Table 4-10, Table 4-11 and Table 4-12) from the TPS system and store it in
the middleware.

Table 4-10 UMA: TPS inverter variables

VARIABLE DESCRIPTION UNIT
 Time Timestamp String date UTC

GTI L1, L2, L3 Current PV DC/DC - PV Pannels Current Amps

GTI L1, L2, L3 Voltage PV DC/DC - PV Panels Voltage Volts

GTI L1, L2, L3 Real Power PV DC/DC - Real Power kW

GTI L1, L2, L3 Reactive Power PV DC/DC - Reactive Power kVAr

GTI L1, L2, Reactive Setpoint -
GTI Max P Export Limit GTI Max P Export Limit kW

GTI Max Q Export Limit GTI Max Q Export Limit kVAr
GTI Max P Import Limit PV DC/DC - Max P Import Limit Setpoint Report Back

(curtailment)

kW

GTI Max Q Import Limit PV DC/DC - Max Q Import Limit Setpoint Report Back

(curtailment)

kVAr

Status register -

Error register 1, 2 -

Analogue Spare 1, 2, 3, 4, 5 -

Table 4-11 UMA: TPS BESS variables

VARIABLE DESCRIPTION UNIT

Fully charged status If 1 BESS is fully charged -

Fully discharged status If 1 BESS is fully discharged -

BESS status 1: Idle, 2:Run, 4: error -

BESS mode Depending on Application -

BESS error Error Code -

BESS warning Warning code -

BESS watchdog Heartbeat counter, increments every sec, it resets at , 65.535 -

V sum of Cells (H) & (L) Total cell Voltage in rack. Average if more than one Volts

Total I DC (H) & (L) Total BESS DC current Amps

Cell T min (H) & (L) Temperature of cell with lowest temperature Celsius

Cell T max (H) & (L) Temperature of cell with Highest temperature Celsius

Charge available (H) & (L) Maximum allowed charging power kW

Discharge available (H) & (L) Maximum allowed discharging power kW

BESS SOC total (H) & (L) State of Charge of BESS %

Enable system 1: start
0: stop

-

Reset error 1: reset active error -

EMS watchdog heartbeat Heartbeat counter. If not changed for more than 60 seconds
while BESS active system goes to idle.

-

Acknowledge fault Clears reg: BESS error, BESS warning -

Table 4-12 UMA: TPS DC/DC converter variables

VARIABLE DESCRIPTION UNIT

D5.5 Prototypes implemented.

23

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

PV DC/DC converter
PV DC/DC - PV Panels Current DC Current on the PV panels input of DC/DC converter. Amps

PV DC/DC - PV Panels Voltage DC Voltage on the PV panels input of DC/DC converter Volts

PV DC/DC - Real Power Real Power taken from the PV Panels kW

PV DC/DC - Max P Import Limit
Setpoint Report Back
(curtailment)

Report back for Maximum real power that can be imported
(load) on DC/DC converter

kW

MPPT set point MPPT set point Volts

Status register 1 - Initialization
2 - Stand-by
3 - Start-up
4 - Run
5 - Fault
6 - Locked out

-

Error register 1 Details meaning of individual bits will be defined later. -

Error register 2 Details meaning of individual bits will be defined later. -

PV DC/DC converter heartbeat out Heartbeat counter: increments every sec, resets at 65,535 -

PV DC/DC - Max P Import Limit
Setpoint (curtailment)

 kW

DC/DC converter heartbeat in Heartbeat counter. If not changed for more than 60 seconds
while DC/DC active system goes to shutdown

-

Enable PV DC/DC Latch On = Enabled
Latch Off = Disabled

-

PV DC/DC Power limit update
(curtailment)

Control to update Setpoints
Send 1 to trigger update

-

BESS DC/DC converter
BESS DC/DC - Battery Current
(converter measurement)

DC Current on the Batteries input of DC/DC converter.
 Positive current = Import from the battery
 Negative current = Export to the battery

Amps

BESS DC/DC - Battery Voltage
(converter measurement)

DC Voltage on the Batteries input of DC/DC converter Volts

BESS DC/DC - Real Power
(converter measurement)

Positive current = import from the battery
Negative current = Export to the battery

kW

BESS DC/DC - Power reference
setpoint Report Back

Positive current = import from the battery
Negative current = Export to the battery

kW

Status register 1 - Initialization
2 - Stand-by
3 - Start-up
4 - Run
5 - Fault
6 - Locked out

-

Error register 1 Details meaning of individual bits will be defined later. -

Error register 2 Details meaning of individual bits will be defined later. -

Reset error 1: reset active error for BESS -

BESS DC/DC converter heartbeat
out

Heartbeat counter: increments every sec, resets at 65,535 -

Fully charged status If 1 BESS is fully charged -

Fully discharged status If 1 BESS is fully discharged -

BESS status 1: Idle, 2:Run, 4: error -

BESS mode Depending on Application -

BESS error Error Code -

BESS warning Warning code -

BESS watchdog Heartbeat counter, increments every sec, it resets at , 65.535 -

V sum of Cells Total cell Voltage in rack. Average if more than one V

Total I DC Total BESS DC current A

Cell T min Temperature of cell with lowest temperature C

Cell T max Temperature of cell with highest temperature C

Charge available Maximum allowed charging power kW

Discharge available Maximum allowed discharging power kW

BESS SOC total State of Charge of BESS %

BESS DC/DC - Power Setpoint Request power transfer from/to BESS kW

D5.5 Prototypes implemented.

24

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Enable BESS DC/DC Latch On = Enabled
Latch Off = Disabled

-

BESS DC/DC Update Setpoint Control to update Setpoints
Send 1 to trigger update

-

4.2.1.8 Arrigo BMS (Regin)
Arrigo BMS is the building management system from Regin that controls and monitors the
mechanical and electrical systems that will be installed in the Psychology Faculty building. It
is the case of the PV inverters or the power meters to monitoring the energy consumption.
Arrigo BMS provides the data through a REST API. Currently, the system is not available, but
it is expected to be deployed and ready to be used soon.

4.2.1.9 EM24
It is used to control and monitor the energy consumption in the same way as the one described

for 4.2.1.2 EM210. Two energy meters will be installed in Module 2 and Module 3, respectively,

in the Computing Sciences Faculty building at University of Málaga.

The communication protocol is MODBUS TCP/IP. The adapter periodically connects and

retrieves instantaneous data which is stored in the middleware. The polling period is once per

five minutes and the variables that are collected are the ones shown in Table 4-5.

4.2.1.10 SACE EMAX2
The SACE EMAX2 is an energy meter. The system is used for:

• Reading and monitoring the building energy consumption
• Collection of historical data

Currently, the system is not available, but it is expected to be deployed soon. The system will
be installed in Module 1 of the Computing Sciences Faculty building at University of Málaga,
and it is used to control and monitor the energy consumption for this module in the building.
The communication protocol is the same as other energy meters: MODBUS TCP/IP. The
adapter periodically connects and retrieves data (see Table 4-5) that is stored in the
middleware. The polling period is one time per five minutes.

4.2.1.11 WM30
The power meter operates in a similar way than the rest of energy meters, for example the one

described in Section 4.2.1.2 EM210. Currently, this device is not installed but it is expected to

be installed and used soon. The WM30 power meter will be installed in Sport Center at UMA.

The communication protocol is MODBUS TCP/IP and the polling period is once per five

minutes, (see Table 4-5).

4.2.1.12 WM20
The WM20 energy meter, uses Modbus TCP/IP and is almost identical to the WM30 (see

4.2.1.12). This system is installed in Module 4 of the Computing Sciences Faculty building at

University of Málaga. The polling period is once per five minutes. And the communication

protocol is Modbus TCP/IP. The variables are the same as the ones shown in Table 4-5.

4.2.1.13 PV1000A
The PV1000A is a smart logger that monitors and manages the photovoltaic power system
deployed in the Computing Science Faculty at University of Málaga. It transparently converts
protocols, collect, and save data, monitor, and manages all the devices of the photovoltaic
power system.
At University of Málaga, the grid of PV panels consists of 4 inverters connected to four different
set of photovoltaic panels. Each of this inverter is connected to one power meter and in turn
with one SmartLogger. The SmartLogger is the one in charge of controlling and managing the
power meter and the inverter. Four different SmartLoggers and four different adapters make it
possible to collect information (see Table 4-13) and store it in the middleware. The information

D5.5 Prototypes implemented.

25

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

and the communication with Smart Loggers are provided via the Modbus TCP/IP protocol. The
polling period is once per five minutes

Table 4-13 UMA: PV1000A variables

VARIABLE DESCRIPTION UNIT

Date&time Epoch sec UTC N/A

The local time Epoch seconds, local time of theSmartLogger N/A

Trasfer trip 0:Run; 1:Fautl outage. The device shuts down when it
stop due it faults and doesn't respond to the starip request

N/A

DC current Equals the total input DC current of all inverters. If the
value exceeds the rage specified by U32, use reg 40554

A

Input power Equals the total input power of all inverters kW

CO2 reduction Equals the total CO2 reduction of all inverters. If the value
exceeds the rage specified by U32, use reg 40550

kg

Active power Equals the total active output power of all inverters kW

PF Equals the total power factor of all inverters N/A

Reactive power Equals the total reactive output power of all inverters kVar

DC current 2 Represent a larga value compared with register 40524 A

E-Total Equals energy yield generated by all inverters kWh

E-Daily Equals daily energy yield generated by all inverters kWh

Duration of daily power generation h

Plant status 0: Idle; 1: On-grid; 2: On-grid: self-derating; 3: On-grid:
Power limit; 4: Planned outage; 5: Power limit outage; 6:
Fault outage; 7: Communication interrupt

N/A

Phase A current Equals the sum of phase A currents of all inverters A

PhaseB current Equals the sum of phase B currents of all inverters A

Phase C current Equals the sum of phase C currents of all inverters A

Uab Line voltage between phases A and B V

Ubc Line voltage between phases B and C V

Uca Line voltage between phases C and A V

Max. reactive adjustment The real-time range for reactive power adjustment. Equals
the total max. power of all inverters connected in parallel
multiplied by 60%

kVar

Min.reactive adjustment The real-time range for reactive power adjustment. Equals
the total max. power of all inverters connected in parallel
multiplied by 60%

kVar

Max.active adjustment The real-time range for active power adjustment. Equals
the total max. power of all inverters connected in parallel
multiplied by 60% x (-1)

kW

Locked 0: Locked; 1: Unlocked; If more than one inverter is on-
grid and feeding power to the grid, the status is Unlocked.

N/A

CO2 emission reduction coeficient [0-10]

kg/kWh

The implemented adapter also allows the power of the inverter to be limited to a given
percentage.

4.2.2 UNC
The Unical demo site located at University of Calabria in Italy follows a different approach in
terms of communication. The data from the demonstrator is collected in a centralized MySQL
database provided by Amazon. The ebalance plus system and more specifically each adapter
can query the database to obtain the needed information. As explained in Section 1 ebalance
plus encourages the use of a distributed architecture. This does not mean that it cannot be
adapted to a centralized scenario like the one at UNC. However, the centralized scenario is

D5.5 Prototypes implemented.

26

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

more likely to be found in already existing deployments that need to be adapted to ebalance
plus. For new deployments the distributed approach is preferred.

4.2.2.1 SMARTMETER
The smart meters are configured to send the measures every 5 seconds to the application
server which saves the records on the DB MySQL. For each monitored structure/building more
than one smart meter is installed so the data of the smart meters are collected and averaged
every 15 minutes and stored in a separate table. Overall, the following aggregated values (see
Table 4-14) are provided:

• 1 smart meter in Cubo18B inside Office Building

• 1 smart meter in Cubo44B inside Office Building

• 1 smart meter in office Cubo31B inside Office Building

• 1 smart meter in office Cubo41B inside Office Building

• 1 smart meter in Monachi121 inside Residential Building

• 1 smart meter in Monachi122 inside Residential Building

• 1 smart meter in Monachi123 inside Residential Building

• 1 smart meter in Monachi124 inside Residential Building

• 1 smart meter in Monachi223 inside Residential Building

• 1 smart meter in Chiodo2 inside Experimental Building

Table 4-14 UNC: smart meter parameters

VARIABLE DESCRIPTION UNIT

v1, 2, 3 Voltage value measured by the first, second and third phase V

p1 Active power adsorbed by loads connected on the first phase W

p2 Active power adsorbed by loads connected on the second phase W

p3 Active power adsorbed by loads connected on the third phase W

q1 Reactive power adsorbed by loads connected on the first phase VAr

q2 Reactive power adsorbed by loads connected on the second phase VAr

q3 Reactive power adsorbed by loads connected on the third phase VAr

q4 Reactive power adsorbed by loads connected on the fourth phase VAr

q5 Reactive power adsorbed by loads connected on the fifth phase VAr

q6 Reactive power adsorbed by loads connected on the sixth phase VAr

created_at Timestamp relating to the creation of each row

measured_at Timestamp relating to the last measure time

Our adapter periodically perform database queries and retrieves instantaneous data which is
stored in the middleware. The polling period is once per fifteen minutes.

4.2.2.2 PV INVERTER
The functionality of PV Inverters is similar that the smart meters, they are configured to send
the measures every 5 seconds to the application server which saves the records on the DB
MySQL. For each monitored structure/building more than one smart meter is installed so the
data of the PV Inverters are collected and averaged every 15 minutes and stored in a separate
table. Overall, the following aggregated values (see Table 4-15) are provided:

• 1 PV Inverter in Cubo18B inside Office Building

• 1 PV Inverter in Cubo44B inside Office Building

• 1 PV Inverter in office Cubo31B inside Office Building

• 1 PV Inverter in office Cubo41B inside Office Building

D5.5 Prototypes implemented.

27

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

• 1 PV Inverter will be installed in Monachi inside Residential Building

Table 4-15 UNC: Office and residential PV inverter parameters

VARIABLE DESCRIPTION UNIT

p4 Active power produced by PV plant connected on the first phase W

p5 Active power produced by PV plant connected on the second phase W

p6 Active power produced by PV plant connected on the third phase W

created_at Timestamp relating to the creation of each row

measured_at Timestamp relating to the last measure time

The adapter periodically perform database queries and retrieves instantaneous data which is
stored in the middleware. The polling period is once per fifteen minutes.

4.2.2.3 AMPERE
It is the same device as the one explained in section 4.2.1.4 AMPERE. Currently, this device
is not installed but it is expected to be installed and used soon. The plans include the following
installations:

• Cubo Office Building: 2 batteries.

• Monachi Residential Building: 5 batteries.

4.2.2.4 IOT DEVICES
Currently, these devices have not been installed but they are currently being tested and are

expected to be installed and used soon. All IOT devices will be installed in Residential Monachi

Building. The difference IOT devices will be:

• Shelly H&T sensor. Smart humidity and temperature sensors: gather humidity

and temperature data.

• Shelly Plus 1 and Shelly Plus 1PM. Smart Plugs (with optional power metering

capabilities): Allows selected devices to be turn on/off and to measure power

consumption.

• Xiaomi Light sensor. Light sensors: Collect luminosity readings

4.2.2.5 SMART APPLICANCES

Currently, these devices are not installed but it is expected to be installed and used soon. All
Smart appliances will be used in Residential Monachi Building. And The different Smart
appliances will be:

• Air Conditioning System: REST API to control and monitor the system.

• Tekka dishwasher: REST API to control and monitor the device

• Fridge (optional): REST API to control and monitor the device

4.2.2.6 SMART METER CHIODO2
This smart meter is installed inside Experimental Chiodo2 Building and it is configured to send
the measures every 5 seconds to the application server which saves the records on the DB
MySQL. The smart meter is collected and averaged every 15 minutes and stored in a separate
table. Overall, the following aggregated values (see Table 4-16) are provided:

Table 4-16 UNC: Chiodo2 smart meter parameters

VARIABLE DESCRIPTION UNIT

p1 Active power produced by PV plant connected on the first phase W

p2 Active power produced by PV plant connected on the second phase W

p3 Active power produced by PV plant connected on the third phase W

D5.5 Prototypes implemented.

28

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

created_at Timestamp relating to the creation of each row

measured_at Timestamp relating to the last measure time

The adapter periodically perform database queries and retrieves instantaneous data which is
stored in the middleware. The polling period is once per fifteen minutes.

4.2.2.7 BATTERY NANO_GRID_2

This battery is installed inside Experimental Chiodo 2 Building, and it is monitored through the
nano_grid_2 table. See Table 4-17.

Table 4-17 UNC: Battery nano grid values

Name Description nano_grid_2 Unit

p_ups Power exchanged with the UPS [W] – Not monitored (now) W

p_batt Power exchanged with the battery [W] W

v_bus_dc Nanogrid DC bus voltage [V] V

v_rms_ups RMS UPS voltage [V] V

v_batt Battery Voltage [V] V

i_rms_ups RMS supplied ups current [W] – Not monitored (now) W

i_batt Exchanged battery current [A] A

fault_ups 0/1: 1 if a fault do to the ups occurs 0/1

stato_batt 0/1 : Battery connected/disconnected 0/1

stato_ng It indicates the state of the Nanogrid -

on_off 0/1: off/on state 0/1

soglia [0 to 5] nanogrid operative voltage threshold 0-5

temp_bms Battery Temperature [°C] ºC

soc_bms Battery state of charge [%] %

i_charge_bms Maximum battery charge current [A] A

time_save Unix timestamp

The adapter periodically perform database queries and retrieves instantaneous data which is
stored in the middleware. The polling period is once per fifteen minutes.

4.2.2.8 NANO_GRID_1

The nano grid (1 and 2) at UNC is monitored through nano_grid tables. The adapter collects

the data in Table 4-18 and Table 4-19.

Table 4-18 UNC: Nano grid 1 parameters

Name Description nano_grid_1 Unit

p_rete Power exchanged with the grid [W] W

p_pv Power exchanged with the PV system [W] W

v_bus_dc Nanogrid DC bus voltage [V] V

v_rms_rete RMS grid voltage [V] V

v_pv PV voltage [V] V

i_rms_rete RMS exchanged grid current [A] A

i_pv Supplied PV current [A] A

D5.5 Prototypes implemented.

29

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

fault_rete 0/1: 1 if a fault do to the grid occurs 0/1

stato_rete 0/1 : Grid connected/disconnected 0/1

stato_pv 0/1 : PV connected/disconnected 0/1

stato_ng It indicates the state of the Nanogrid -

on_off 0/1: not operative/operative state 0/1

soglia [0 to 5] nanogrid operative voltage threshold 0-5

time_save Unix timestamp

Table 4-19 UNC: Nano grid 2 parameters

Name Description nano_grid_2 Unit

p_ups Power exchanged with the UPS [W] – Not monitored (now) W

p_batt Power exchanged with the battery [W] W

v_bus_dc Nanogrid DC bus voltage [V] V

v_rms_ups RMS UPS voltage [V] V

v_batt Battery Voltage [V] V

i_rms_ups RMS supplied ups current [W] – Not monitored (now) W

i_batt Exchanged battery current [A] A

fault_ups 0/1: 1 if a fault do to the ups occurs 0/1

stato_batt 0/1 : Battery connected/disconnected 0/1

stato_ng It indicates the state of the Nanogrid -

on_off 0/1: off/on state 0/1

soglia [0 to 5] nanogrid operative voltage threshold 0-5

temp_bms Battery Temperature [°C] ºC

soc_bms Battery state of charge [%] %

i_charge_bms Maximum battery charge current [A] A

time_save Unix timestamp

4.2.2.9 INVERTER FRONIUS/PV PLANT CHIODO2
It is monitored with the smart meter named SMEBPLUSCHIODO2. It is installed in the
Experimental Building and provides the parameters shown in Table 4-20.

Table 4-20 UNC: Inverter Fronius/PV plant parameters

VARIABLE DESCRIPTION UNIT

p4 Active power produced by PV plant connected on the first phase W

p5 Active power produced by PV plant connected on the second phase W

p6 Active power produced by PV plant connected on the third phase W

created_at Timestamp relating to the creation of each row

measured_at Timestamp relating to the last measure time

The adapter periodically perform database queries and retrieves instantaneous data which is
stored in the middleware. The polling period is once per fifteen minutes.

4.2.3 JUNIA

D5.5 Prototypes implemented.

30

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

The JUNIA demo site takes place in three different buildings: HEI (Hautes Etudes
d’Ingénieur) Building (5RNS building and 13RT building), HA (Hotel Académique) Building
and Rizomm Building as shown in Figure 4.2.

Figure 4.2 JUNIA demo site buildings

All the information in this demo site is provided by means of a centralized REST API which
gives information about the following subsystems:

• Smart meters (Consumption)

• Inverters

• Hot water storage

• HVAC (Heating, Ventilation, and Air Conditioning)

• Aurion (classroom reservation system)

• Hyperplanning

• Weather Station in ‘common’ location, accessible by all locations

4.2.3.1 SMART METER
Smart meters provide information of consumption of each building. There are smart meters
available for all buildings: HEI (13RT, 5RNS), Rizomm, HA.
The information is provided in the cloud via the REST API that has been used by our adapter
to collect the parameters shown in Table 4-21.

Table 4-21 JUNIA: smart meter readings

VARIABLE DESCRIPTION

measurement_name The name of the building

Value Consumption of the building

Unit W

last_updated_at Datetime when generate value of consumption

4.2.3.2 INVERTER
The inverters get information about PV production. There is PV Inverter data available from

HEI and Rizomm buildings. The information is provided in the cloud via a REST API that it has

been used by our adapter to collect the parameters shown in Table 4-22.

D5.5 Prototypes implemented.

31

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Table 4-22 JUNIA: PV inverter variables

VARIABLE DESCRIPTION

measurement_name The name of the building

value Production of the building

unit W

last_updated_at Datetime when generate value of production

The REST API offer an endpoint to modify the max amount of power of a given inverter. The
value must be specified in Watts (W).

4.2.3.3 HOT WATER STORAGE
The hot water storage endpoint gives hot water consumption information. This is available for
HEI, Rizomm and HA buildings. The information is provided in the cloud via a REST API that
it has been used by our adapter to collect the parameters shown in Table 4-23. The REST API
also provides an endpoint for changing the status of the hot water storage system for each
building (On/Off).

Table 4-23 JUNIA: Hot water consumption variable

VARIABLE DESCRIPTION

measurement_name The name of the building

value Consumption of hot water storage system of the building

unit kW

last_updated_at Datetime when generate value of production

4.2.3.4 HVAC

The HVAC system provides a high number of parameters that can be obtained and monitored
coming for a different number of sensors deployed in the rooms. E.g.: co2, temperature,
occupancy, heat valve status, etc. Given the high number of variables available a current
analysis of the algorithm requirements is being carried out to limit data collection to the
endpoints needed (selected rooms). The HVAC system is available from the API for the HEI
building and its development is currently in progress for the Rizomm building.
The values that the HVAC provides are:

• Co2. The unit for this value is ppm

• Damper position. The unit for this value is %

• Ambient temperature. The unit for this value is ºC

• Occupancy mode. Integer number describing the occupancy

• Heat valve position. The unit for this value is %

The REST API offer an endpoint for changing setpoints of the HEI HVAC System. The setpoints
are positive integers and can either be for Temperature or CO2 ppm.

4.2.3.5 AURION (PLANNING SOFTWARE)
It is a software for classroom reservations. The information is provided in the cloud via a REST
API that it has been used by our adapter to collect the parameters shown in Table 4-24. With
the REST API the reservations for HEI building for today and tomorrow are provided.

Table 4-24 JUNIA: Aurion class reservation software variables

VARIABLE DESCRIPTION UNIT

classcode The name of classroom String

D5.5 Prototypes implemented.

32

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

numplaces Number of places of the classroom Integer

eventstart Timestamp to start the reservation Datetime

eventend Timestamp to end the reservation Datetime

4.2.3.6 WEATHER STATION
The Junia demonstrator provides weather data coming from a weather station that is used by
all three buildings. The following information is provided:

• Humidity. The unit for this value is ‘%’.

• Temperature. The unit for this value is ‘ºC’.

• Solar irradiation. The unit for this value is ‘W/m2’.

• Wind speed. The unit for this value is ‘m/s’.

• Wind direction. The unit for this value is ‘º’.

• Precipitation. Get value of rain. The unit for this value is ‘mm’.

4.2.3.7 BATTERY
Batteries are common for all three buildings and provide state of charge and current power
information. They also provide a setpoint for specifying the charge/discharge power. Now, this
endpoint is available through the API, but some issues have been detected with the equipment
and is currently taken care of by the manufacturer. The information provided by this system is
described in Table 4-25.

Table 4-25 JUNIA: battery variables

VARIABLE DESCRIPTION UNIT

sto_power [INPUT/OUTPUT] Power W

sto_soc State of charge none (%)

sto_pcharge_max Maximum power for charging W

sto_pdischarge_max Discharge maximum power W

sto_capacity Capacity Wh

sto_energy_discharge Available energy for charge Wh

sto_energy_charge Available energy for discharge Wh

4.2.3.8 EV CHARGERS
At the moment, no EV chargers are available through the API, but its setup and integration are
expected to start soon.

4.2.3.9 HYPERPLANNING

Hyperplanning is a software system like the one explained in Section 4.2.3.5. This software
provides information about class reservation for the Rizomm building. This information is not
available now, but it is expected to be integrated in the API.

4.2.4 DTU

The DTU demo site consists of 30 Summer houses with a swimming pool heated by a heat
pump (see Figure 4.3). A REST API makes it possible to monitor the status of the swimming
pool and to actuate on the valve that controls the flow of hot water. Using the REST API it is
possible to obtain the water temperature forward and water return temperature of the
swimming pool and the state of the valve (open/close) as shown in Table 4-26. Finally, the
heat pump valve can be controlled through this REST API.

D5.5 Prototypes implemented.

33

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Figure 4.3 DTU heat pump diagram

Table 4-26 DTU monitoring variable

VARIABLE DESCRIPTION UNIT

read_timestamp Unix timestamp

water_forward_temperature Water forward temperature ºC

water_return_temperature Water return temperature ºC

The adapter periodically perform database queries and retrieves instantaneous data which is
stored in the middleware. The polling period is once per minute for each of the monitored
houses.

4.2.5 In-lab demo
The in-lab demo gives great flexibility when it comes to testing different scenarios. In this sense
any type of information can be simulated. The information that will be stored and used in this
demo site is not completed yet and the design of the corresponding experiments is still in
progress.

D5.5 Prototypes implemented.

34

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

5 Demo site prototype overview
Section 3 has presented the term MU in the context of the ebalance plus project. Then, in
Section 4 the different integrations done to connect an instance of the middleware and an
external device have been shown. This section depicts the planned global architecture for each
demo site showing how many MUs are expected for each demo site, and in which instances
the data coming from adapters is collected. Note, that these diagrams are a work in progress
and might change in the final deployment based on a change in requirements.

5.1 UMA

The University of Málaga demo site is composed of four different buildings all of them
connected to a single MVGMU (UMA_MV_1) which is on the top of the MU hierarchy.

Figure 5.1 UMA: Ada Byron and Psychology faculty connectivity scheme

Figure 5.2 UMA: Sport centre and Computing science faculty connectivity scheme

D5.5 Prototypes implemented.

35

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

The connectivity scheme for the Ada Byron building is depicted in the left side of Figure 5.1.
One CMU (UMA_CMU_ADA_1) and one DERMU (UMA_DERMU_ADA_1) are in charge of
collecting information from the devices explained in previous sections. These two units are
connected to a single LVGMU (UMA_LVGMU_ADA_1). Finally, the Ada Byron demo site and
the rest of buildings in the UMA demonstrator are monitored by a single MVGMU (UMA_MV_1)
which is expected to be installed in the fog server described in Section 3.1.2.
The information collected from the Psychology faculty (right side of Figure 5.2) comes from the
Arrigo BMS by the manufacturer Regin. This information is handled by a CMU
(UMA_CMU_PSYCHOLOGY_1) which connects to a LVGMU
(UMA_LVGMU_PSYCHOLOGY_1). An additional LVGMU
(UMA_LVGMU_PSYCHOLOGY_2) is deployed. These 2 LVGMU are connected to
UMA_MV_1. The Sport centre at University of Málaga (see Figure 5.2) will have one CMU
(UMA_CMU_SPORT_1) and two LVGMUs (UMA_LVGMU_SPORT_1 and
UMA_LVGMU_SPORT_2). Finally, the computing science faculty (Figure 5.2) contains one
CMU (UMA_CMU_COMPUTING_1) and a DERMU (UMA_DERMU_COMPUTING_1) on the
lowest level of MUs and two LVGMU at the middle layer.

5.2 UNC

The UNC demo site (see Figure 5.3) located at University of Calabria in Italy is a complex
demo site that spans different locations: Cubo office buildings, Monaci residential buildings,
Mega centrale (primary MV/MV substation) and Chiodo2 building.

Figure 5.3 UNC: Connectivity scheme of the Cubo residential buildings

Cubo residential buildings span 4 different buildings (18B, 44B, 31B and 41B). For buildings
18B and 44B, 1 CMU, 1 DERMU and 2 LVGMU for each are deployed. For buildings 31B and
41B only 1 DERMU is deployed and 2 LVGMU. In the same way as for the UMA demo site
only 1 MVGMU (UNC_MVGMU_1) is deployed for the whole demonstrator.

D5.5 Prototypes implemented.

36

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Figure 5.4 UNC: Connectivity scheme of Monaci residential buildings

For the Monaci residential buildings (shown in Figure 5.4) a single DERMU is installed to
monitor and control the PV inverters. Then one CMU per building (121, 122, 123, 124 and 223)
is used to collect information about IoT devices, smart appliances, batteries, and smart meters.
All the CMUs and the DERMU are connected to a single instance of a LVGMU
(UNC_LVGMU_MONACI).

Figure 5.5 UNC: Connectivity scheme of Mega centrale and Chiodo2 building

Finally, the Mega centrale primary substation is monitored by an LVGMU
(UNC_LVGMU_MEGACENTRALE) and the Chiodo2 experimental building by a DERMU
(UNC_DERMU_CHIODO2).

5.3 JUNIA

The JUNIA demo site (see Figure 5.6) takes place in three different buildings, presented in
Figure 5.6. Each building is monitored by a CMU (JUNIA_CMU_HEI_1,
JUNIA_CMU_RIZOMM_1, JUNIA_CMU_HA_1). Each CMU oversees the information
collection of the devices deployed within the building. An LVGMU (JUNIA_LVGMU_1) which
is going to virtualized, will connect to each CMU.

D5.5 Prototypes implemented.

37

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Figure 5.6 JUNIA: connectivity scheme

5.4 DTU

Figure 5.7 DTU: connectivity scheme

The DTU demo site (see Figure 5.7) is composed of a set of summer houses, each of them
monitored by a CMU. All CMUs are connected to a single instance of an LVGMU
(DTU_LVGMU_1).

5.5 In-lab demo

The In-Lab demonstrator (see Figure 5.8) consists of 24 prosumer blocks, each containing a
management unit (MU) that can be representing either a CMU or a DERMU, depending on the
configuration of the block. The demonstrator consists also of eight (8) secondary substation
(SS) blocks, each containing a LVGMU and one primary substation (PS) block with a MVGMU.
Finally, there is the TLGMU. All these management units are connected to one local network,
but any other partitioning in sub-networks is also possible. The MUs can talk to each other
directly, but it is also possible to involve the proxy server for that, to check the caused
communication overhead.
On each MU, there are respective adapters. All MUs involve the smart meter adapter to interact
with the measurement equipment and actuators (including the transmission line blocks on
LVGMUs and MVGMUs). Additionally, CMUs and DERMUs involve the behavior simulator
adapter, to interact with the simulation generating the energy profile.

D5.5 Prototypes implemented.

38

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Figure 5.8 In-Lab: connectivity scheme

D5.5 Prototypes implemented.

39

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

6 Conclusions
A set of prototypes MU have been developed to be tested in several demo sites. An MU is a
physical or virtualized autonomous entity that contains the software necessary to:

• Communicate among themselves using the data exchange middleware

• Gather information from external devices or APIs using the adapters

• To run general purpose algorithms that made use of the information collected by the

local or remote MUs

The developed MUs all run Linux operating system with preconfigured services that
automatically run when the device boots up. A single instance of the middleware with its
embedded database is installed in each MU. Also, based on the location of the MU specific
adapters are installed as separate java processes (which also run as Linux services) to collect
information and store in the local database. Four different demo sites and an additional in-lab
demo have been presented with an estimated number of deployed MUs higher than thirty.
Some of the most used communication protocol supported by the ebalance plus system are
REST API, Modbus TCP/IP, web socket and SQL database.

D5.5 Prototypes implemented.

40

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

References

[1] Ebalanceplus project, "D5.3 Data exchange middleware specification," 2022.

[2] Ebalanceplus project, "D6.1 Evaluation methodology," 2021.

[3] Ebalanceplus project, "D3.4 - Specification and implementation of grid automation and
control devices and interfaces"

