

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grand agreement N°864283

AUTHORS : KRZYSZTOF PIOTROWSKI DATE : 28.01.2022
 IGOR KOROPIECKI
 JAIME CHEN

Data exchange
middleware

specification

Deliverable D5.3

Networking layer specification

2

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Technical References

1 PU = Public

 PP = Restricted to other programme participants (including the Commission Services)

 RE = Restricted to a group specified by the consortium (including the Commission Services)

 CO = Confidential, only for members of the consortium (including the Commission Services)

Document history
V Date Beneficiary Author

0 21/07/2021 SOF Jaime Chen

1 26/11/2021 IHP Krzysztof Piotrowski, Igor Koropiecki

Project Acronym ebalance-plus

Project Title
Energy balancing and resilience solutions to unlock the flexibility and

increase market options for distribution grid

Project Coordinator CEMOSA

Project Duration 42 months

Deliverable No. D5.3

Dissemination level 1 PU

Work Package WP5 Communication Platform and system integration

Task T5.3 Data exchange middleware

Lead beneficiary SOF

Contributing

beneficiary(ies)
IHP

Due date of

deliverable
31 January 2022

Actual submission

date
28 January 2022

Networking layer specification

3

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Summary

1.1 Summary of Deliverable

This document describes the data exchange middleware, which oversees distributing the
information generated in the system to make it available to the different algorithms. It is also
the middleware’s responsibility to adapt different communication protocols so that information
from a diverse number of external devices can be stored. The document presents the
architecture of the system and provides implementation details of two important concepts: the
middleware, which offers a data-centric API to access the data and the adapters, which convert
information from external devices into data that is understandable by the middleware, and
consequently by the algorithms.

Disclaimer
This publication reflects the author’s view only and the European Commission is not
responsible for any use that may be made of the information it contains.

Networking layer specification

4

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Table of Contents

TECHNICAL REFERENCES .. 2

DOCUMENT HISTORY ... 2

SUMMARY .. 3

1.1 SUMMARY OF DELIVERABLE ... 3

DISCLAIMER .. 3

TABLE OF CONTENTS .. 4

1 INTRODUCTION ... 7

2 THE EBALANCE-PLUS ARCHITECTURE ... 7

3 DATA EXCHANGE MIDDLEWARE DESIGN .. 10

3.1 MIDDLEWARE ARCHITECTURE ... 10
3.2 MIDDLEWARE DATA INTERFACE AND API ... 12
3.3 MIDDLEWARE UTILITIES .. 13

4 MIDDLEWARE ADAPTER MODULES ... 14

4.1 INTRODUCTION .. 14
4.2 ADAPTER MODULE ARCHITECTURE .. 14
4.3 THE ADAPTER AND MODULE ABSTRACTIONS... 15

5 IMPLEMENTATION OF THE DATA EXCHANGE MIDDLEWARE 17

5.1 MIDDLEWARE SERVER .. 17
5.2 DATA INTERFACE ... 20
5.3 BOOTSTRAPPER .. 21

6 IMPLEMENTATION OF THE ADAPTER MODULES .. 22

6.1 ADAPTER AND INTERACTIONS IMPLEMENTATION ... 22
6.2 MODULE ABSTRACTION IMPLEMENTATION .. 23
6.3 DEMO SITE ADAPTERS AND MODULES .. 23

7 CONCLUSIONS .. 24

REFERENCES .. 25

Networking layer specification

5

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Table of tables

Table 1 Ebalanceplus deployment variables .. 8
Table 2 Deployment specification of the example depicted in Figure 2 9
Table 3 Generic adapters .. 22
Table 4 Demosite adapter modules ... 23

Table of figures
Figure 1 Example of the ebalanceplus architecture ... 7
Figure 2 Simplified view of a test ebalanceplus deployment .. 9
Figure 3 Information exchange in ebalanceplus ... 10
Figure 4 Data exchange middleware services ... 11
Figure 5 Communication between different instances of the middleware 12
Figure 6 Data Interface in the context of a Java application ... 12
Figure 7 MWGUI ... 13
Figure 8 AdminGUI .. 13
Figure 9 Adapter module architecture .. 14
Figure 10 Adapter module architecture .. 16
Figure 11 Adapter module in ebalanceplus .. 17
Figure 12 Middleware framework detailed architecture .. 18
Figure 13 Example transmission with a remote middleware .. 19
Figure 14 Communication between client and server through Data Interface 20
Figure 15 Example usage of the Data Interface ... 21
Figure 16 Run method of the generic adapter module ... 23

Networking layer specification

6

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

List of Abbreviations

Abbreviations Definitions
CMU Customer Management Unit
DER Distributed Energy Resources
DERMU Distributed Energy Resources Management Unit
HVAC Heating, Ventilation and Air Conditioning
LVGMU Low Voltage Grid Management Unit
MU Management Unit
MVGMU Medium Voltage Grid Management Unit
PS Primary substation
SCADA Supervisory Control And Data Acquisition
SS Secondary substation
TLGMU Top Level Grid Management Unit
VM Virtual Machine

Networking layer specification

7

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

1 Introduction
The main goal of the project is to increase energy flexibility of distribution grids, predict
available flexibility, increase distribution grid resilience and design and test new ancillary
models to promote new markets based on energy flexibility. These objectives allow unlocking
the energy flexibility market in distribution grids to support energy prosumers and electric
operators. To achieve that goal, a crucial requirement is that the different entities that form the
system need to be able to exchange information and to store it. The following sections present
the software responsible to provide such functionalities which is called the data exchange
middleware or the ebalance-plus middleware interchangeably throughout the document.
Section 2 presents and overview of the ebalance-plus architecture from a communication point
of view. Section 3 details the design of the data exchange middleware. Section 4 introduces
the adapter and module abstraction used to connect the middleware to external data providers.
Sections 5 and 6 provide insights on the implementation of the middleware and adapters
respectively. Finally, Section 7 presents the conclusions.

2 The ebalance-plus architecture

Figure 1 Example of the ebalance-plus architecture

The ebalance-plus system is composed of units, called management units or MUs, that
implement algorithms to forecast and manage the available flexibility to incentivise demand
response programmes and increase the distribution grid capacity to avoid congestions and
advise optimization strategies.
In the proposed architecture each MU is considered an autonomous system, such as an
embedded PC, although other options are possible, such as virtualizing the MUs in containers
or VMs. The units are organized following a tree hierarchy where each MU has a parent MU
and possibly multiple children MUs except for the top-level grid management unit (TLGMU)

Networking layer specification

8

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

which is the MU located at the root of the tree. Figure 1 illustrates the relationship between the
different MUs (depicted as rectangular dark blue boxes) in a scenario that has four main levels
(enumerated from the top of the tree to bottom):

• TLGMU: top level grid management unit located, for example, in the cloud

• MVGMU: medium voltage grid management unit located in the primary substation (PS)

• LVGMU: low voltage grid management unit located in the secondary substation (SS)

• CMU: customer management unit located in the customer premises, buildings, etc.

• DMU: device management unit located inside external devices that communicate with

the system

In addition, distributed energy resource management units (DERMUs) can be deployed at any
level to management DER devices located at different levels of the energy grid.
Each unit must be able to exchange information with external devices and with each other to
distribute the information generated in the system and transport it to the data consumers which
are most often the ebalance-plus algorithms although it can also be GUI applications,
SCADA/monitoring applications, etc. Also, data must be stored and consulted at any time prior
to its generation. The software that provides such functionality is the data exchange
middleware, which is a key concept in the architecture. Another key concept is the adapter
module which assists the middleware in contacting external devices and retrieving the
information from them or modifying available setpoints. For example, an adapter for a smart
battery might be used to get information from the battery state and to change the charging
schedule. This functionality is used by algorithms through the API provided by the data
exchange middleware. From the point of view of the algorithm there is not external device, only
pieces of data that can be written or set. See Chapter 3.2 to get more details about the data
interface abstraction provided by the middleware.
Although Figure 1, that has been used to present the reference architecture of the system,
shows a scenario with four levels, the hierarchical nature of ebalance-plus makes its flexible
and the architecture can be adapted to each specific scenario. Some of the variables that can
be modified based on the scenario requirements are specified in Table 1.

Table 1 ebalance-plus deployment variables

Variable Description

Type of MUs DMU, CMU, DERMU, etc

Number of levels in the hierarchy Depth of the tree

Number of devices per level Customizable per parent MU. Each MU can have
as many children MU as needed

MU hardware Virtualized (container, VM), deployed in a PC or
embedded PC

MU connectivity Through a proxy server, direct connection,
socket-based connection, http-based connection,
etc

Number and types of adapters per
MU

Customizable per MU

Networking layer specification

9

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Figure 2 Simplified view of a test ebalance-plus deployment

Figure 2 shows a simplified view of an example architecture from a communication point of
view with the summarized features shown in Table 2. In this scenario there are 3 different MUs
but deployed in different ways. LVGMU1 is deployed in a conventional server where as CMU1
and CMU2 are deployed in a raspberry PI and a Docker host respectively. LVGMU1 is the
parent of CMUs 1 and 2 and can communicate with them using a direct socket-based
connection (automatically handled by the middleware). Moreover, since the middleware
provides middleware client libraries in different programming languages, the algorithm can run
on Python (in CMU1) or in Java (in CMU2 and LVGMU1). Finally, external devices can be
integrated in the middleware via adapter modules. CMU1 has a Modbus adapter module and
CMU2 has a REST API device module. There is no restriction about the number of adapter
modules that can be connected to a MU.
This scenario shows the flexibility of the proposed architecture and highlights the customizable
nature of ebalanceplus. For example, if the deployment takes place in an outdoor environment
with little physical space or in a customer premise an embedded device is the most sensible
choice.

Table 2 Deployment specification of the example depicted in Figure 2

Variable Description

Type of MUs 2 CMUs (CMU1 and CMU2) and 1 LVGMU
(LVGMU1)

Number of levels in the hierarchy 2

Number of devices per level 2 at customer level and 1 at low voltage grid
level

MU hardware CMU1 is deployed in an embedded PC, CMU2
is virtualized in a container and LVGMU1 is
deployed in a conventional server

MU connectivity direct socket-based communication between
MUs

Number and types of adapters per MU customizable per device

Due to the high number and the autonomous nature of heterogeneous devices that compose
the system, the data exchange middleware needs to handle different protocols, APIs,
programming abstractions and data formats. On the other hand, from the point of view of the
algorithms it is ideal that all the data is obtained, modified using a single programming
abstraction that represents the data in a uniform way. The data exchange middleware fills the

Networking layer specification

10

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

gap between data providers (external devices, sensors, etc) and data consumers (algorithms,
GUI apps, mobile apps) and provides storage and historical access to the data via queries.

Figure 3 Information exchange in ebalance-plus

A simplified view of two MUs exchanging information is depicted in Figure 3. Two algorithms
(running in MU1 and MU2) can exchange data (orange and black arrows) using the middleware
and more specifically using its API (data interface). The use of the API is simplified by using a
middleware client library which internally uses the data interface and offers high levels calls in
a specific programming language. Currently, two client libraries are provided together with the
middleware, one in Python and the other one in Java. In the same way, external devices share
information with the middleware using the data interface. This means that all communication
either between different units (orange arrows), between an algorithm and the middleware
(black arrows) and between an external device and the middleware (yellow arrows), is
performed using the same API. This approach simplifies the development of applications and
make them portable between different units. Two important concepts allow information to be
available in the whole system:

1. The middleware: Allows algorithms to read/write data from MUs (see Chapters 3 and

5)

2. Adapter module: Allows external devices to be integrated in the middleware see

Chapters 4 and 6)

3 Data exchange middleware design

3.1 Middleware architecture

The ebalance-plus system uses a middleware framework that allows the participants to
communicate, exchange and store information. The framework stores data in tuple space
structures which allows to implement a variety of logical structures that can contain all the
information necessary to identify a value, its description, source, and time of creation. The
tuple space is accessed by creating variables that can be written, read, or removed. Each
variable is further divided into owner spaces. Operations on variables are checked against
defined access control policies. By default, each owner can control only their own data. It is
possible to grant or revoke permissions to change the default permissions. The variables
concept implemented by the framework varies slightly from the general understanding of a
variable. The first difference is that by default, each value written to the variable is stored as a
separate entry. The second is that data stored in a single variable can have multiple owners.
The third difference is that a variable can have multiple fields that are defined when creating
the variable. For example, it is possible to create a weather variable that contains fields such

Networking layer specification

11

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

as temperature, humidity, or wind. Then, owners can store and share their weather information
as they please. The architecture of the framework follows a distributed approach. It allows the
participants to store data close to the locations where the data is produced and/or where it
might be consumed in order to be processed. The communication is secured through public
key infrastructure (PKI).
The framework defines the Data Interface channel that is responsible for establishing a secure
and transparent channel for communication between clients and a middleware server instance.
The Data Interface channel is available as a library either in Java or Python. In the context of
the middleware framework, clients that use the library to communicate and implement
functionalities, are referred to as services (see Figure 4). The services use the Data Interface
to perform actions on data (variables), permissions and use other system functionalities.

Figure 4 Data exchange middleware services

The services are generic applications and by default, there are no limitations (other than
limitations enforced by the operating system) in actions they may perform. In cases where a
single machine runs a middleware instance and services that belong to a single user or
services that communicate with the middleware server are run on physically separated
hardware from the middleware and each other, the threat is minimal. However, in cases where
a single machine hosts the middleware and services that belong to different users, there is a
risk of malicious services that have the possibility to obtain confidential information such as
private keys, databases, passwords, or source code of services that belong to competing
users.
To protect against malicious services, the middleware platform implements a utility that is
responsible for:

• bootstrapping secure environments for services.

• running services with adequate privileges.

The middleware servers can communicate directly or through a framework-provided proxy
server (see Figure 5). If both servers are visible to each other, the communication can be
direct. If the destination server is not visible to the source server, the communication must be
executed through a proxy server.

Networking layer specification

12

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Figure 5 Communication between different instances of the middleware

When two middleware servers communicate, a single channel is opened. In this case, only the
destination server has to be visible. The response is sent through the same channel as the
request.

3.2 Middleware data interface and API

The middleware framework includes a library for the services to integrate with the platform.
The library contains an API called the Data Interface (see Figure 6) which is responsible for
providing a transparent and secure communication channel.

Figure 6 Data Interface in the context of a Java application

The Data Interface allows a service to:

• Create variables – when creating a variable, it is possible to specify the name, type,

additional fields, and quota limits.

• Write, read, update, clear values to/in a variable – services can perform any

operation that is necessary for data management in the permitted owner spaces.

• Remove variables – when no other owners have data in the variable, the variable can

be removed.

• Create and revoke permissions – it is possible to subscribe to changes in the

permitted owner spaces. Conditional notifications are also possible.

• Create and remove subscriptions – owners can subscribe to changes in other

owner’s data spaces.

• System information – services can obtain information about the middleware server

that they are connected to.

Networking layer specification

13

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

3.3 Middleware utilities

The middleware framework offers two utilities for management. The first utility – MWGUI is
meant for the non-technical users and allows to browse and visualize the data that the user
owns. Also, using this utility, the user can manage data access permissions for other
stakeholders. It is also possible to subscribe to data changes in context of the current user.
When subscribed, any data writes by other stakeholders in the name of the user, will update
the interface. The utility supports browsing large amounts of historical data by using pagination.
Users can specify the desired date range and the interface displays data grouped by the
chosen range.

Figure 7 MWGUI

The second utility – AdminGUI is meant for the technical users and can be used to manage
middleware server instances. The utility is hosted by the middleware server that the user wants
to manage. It is possible to manually enter connection information to other middleware servers
and manage multiple instances from a single instance of the AdminGUI.

Figure 8 AdminGUI

Networking layer specification

14

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

The AdminGUI implements multiple widgets that make it possible to manage the middleware
instance. The widgets include: Console, Logs, Diagnostics (processor, memory, disk), File
Browser, Benchmarking, Data browsing (variables, permissions, routing table) and Clients.
The interface allows to open widgets in tabs which allows to open as many widgets as
necessary to manage the server. The user can, for example, open a new tab for each managed
server. Access to the GUI is protected and each widget server-side logic implements measures
to make the interface as secure as possible. For example, the file browser can be configured
to constrain directory access up to a certain path.

4 Middleware adapter modules

4.1 Introduction

Smart grids require information from a high number of devices to be distributed from the place
they are generated to where the algorithms will use it. Example of devices that provide useful
information for the intelligent algorithms are:

• Power inverters

• Energy storage systems

• Electrical vehicles and charging stations

• Smart meters

• HVAC systems

The data generated by each of these devices might be needed in an algorithm running on one
or multiple MUs. As a core design guideline, the algorithm should only get the data through
the data interface of the middleware. To follow this guideline, an additional layer of abstraction
is needed to convert information from all these communication protocols to data that the
middleware can understand and process. In ebalance-plus, this layer of abstraction is provided
by an adapter module. The adapter module makes it possible to connect a variety of external
devices with the middleware. This architecture makes it possible to replace or update external
devices without having to reprogram or modify the algorithms and/or the middleware.
Section 4.2 introduces the general adapter module architecture in the context of a MU whereas
Section 4.3 details the internal abstractions used to implement it.

4.2 Adapter module architecture

Figure 9 Adapter module architecture

Networking layer specification

15

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

The high-level module architecture of an adapter module is depicted in Figure 9. An adapter
module is a middleware service, meaning a program that uses the middleware API with some
given credentials, that runs as a Java (or Python) process and has a specific task: mapping
information from an external device to data inside the middleware. The algorithm using the
data exchange middleware will read/write this data but will never directly contact the external
device. This indirect communication scheme simplifies the communication between all devices
in the system since adapter modules can be unplugged without affecting algorithms. The
communication between an external device and the middleware is bidirectional. Information
from the external device is written inside the middleware (e.g., sensor data) and, in the other
way around, information written in some specific variables of the middleware triggers calls in
the external device to configure some setpoints (e.g., changing configuration in the external
device). The communication in each direction is handled separately using different operations
offered by the middleware:

• From the external device to the middleware: the adapter module is configured to

periodically obtain information from the external device and store it in the middleware.

Since many devices will probably use the same communication protocol, for example

Modbus, a single generic adapter is developed for each communication protocol, and

it is later adapted to each specific device.

• From the middleware to the external device: the communication in this direction is

used to configure parameters in the external device when an algorithm requests to do

so (e.g., a balancing algorithm). This communication is initiated when an algorithm

writes a specific value in a middleware variable. This variable will trigger a subscription

which is received by the adapter module. Then the adapter module transforms the

subscription event into a request that modifies the configuration of the external device.

Following these two approaches, communication in both ways (to read/write from the device)
can be achieved using the simple operations offered by the middleware API (write/subscribe
operations in the middleware respectively).

4.3 The adapter and module abstractions

As previously highlighted, the number and nature of the devices that can be connected to the
smart grid system is high. Software applications that need to exchange data between
heterogeneous systems are particularly hard to develop. This, among others, is due to the
efforts required to combine technologies and protocols with very different characteristics (e.g.,
database API, Web services, Modbus, MQTT), translating their semantics, while guaranteeing
a certain modularity and maintainability in the solution.
To simplify information exchange between different devices the concept of adapter has been
developed. An adapter describes the pieces of software aimed to abstract those external
devices that produce and consume data in applications. By means of adapters, every
participating device or external system can be accessed through the same minimalist set of
high-level functions, regardless of the device type and the underlying technology. This is key
to enhance productivity and minimize errors in applications.
Adapters are data-centric components as represented by a Java interface called IAdapter,
which defines simple data functions with the following signatures:

• IDataTime getData(String variable);

• void setData(String variable, IDataTime data);

• void setDataChangeListener(String variable, IDataChange listener);

The getData() and setData() methods allow a variable to be read or written, respectively. The
setDatachangeListener() is used to define the callback (listener) that will be called every time
the specified variable changes its value. Data in adapters, in the same way as it is done in the
middleware is organized in variables. Each variable is identified by a unique string and contains
multiple values or columns together with a timestamp (IDataTime interface).

Networking layer specification

16

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

The notion of adapter allows any external system to be accessed using the same interface. It
is the task of the implementation of each type of generic adapter to deal with the semantics of
the communication protocol used by the external device.
It is worth noting that an adapter is a passive abstraction, which means that it only specifies a
way to manipulate data in an external system but does not actually dictate how this interaction
takes place. To model the dynamic part of the communication between adapters different
approaches are available. On the one hand the concept of “interaction” is proposed. An
“interaction” encapsulates inter-adapter communication patterns that can be reused in
applications, enabling data exchange to be described in a higher-level way. On the other hand,
the subscription capability of an adapter can be used to model more specific interactions
between adapters. Figure 10 shows how these two approaches are used to communicate
adapters.

Figure 10 Adapter module architecture

The first approach, shown in Figure 10 a, is to use the concept of “interaction” to model a data
exchange between the source and destination adapters. Since operations on both ends (a
read and a write) are part of the interface IAdapter this type of communication can be
performed with any type of adapter in a direct manner without having to implement scenario-
specific code. This is usually used to get monitoring information from the source adapter and
store it in the destination adapter. For example, data from a sensor can be periodically received
in the middleware using a transfer interaction.
The second approach, shown in Figure 10 b, allows complex interactions, such as changing
setpoints in an external device, to be modelled at the expense of having to manually handle
part of the code. The interaction starts when a request signal, via a listener, is detected in the
source adapter (step 1). This is notified using the subscription mechanism provided by the
adapter abstraction. This listener notification is handled by a custom program, called the
subscription handler, which transforms the request into something that the destination adapter
understands (step 2). This does not have to be one of the operations in the IAdapter interface.
It is usually device-specific code that changes the configuration of the destination device.
Finally, once the operation has been carried out the result it is written back in the source
adapter (step 3). This final step is used to store the result of the operation back in the source
adapter.

Networking layer specification

17

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Figure 11 Adapter module in ebalance-plus

In ebalance-plus, the term “adapter module” is used to refer to the combination of adapters,
subscription handlers and interactions with the goal of integrating information from an external
device into the data exchange middleware. In terms of deployment, the adapter module is what
it is ultimately deployed as a .jar file to handle the communication between an external system
and the middleware. Figure 11 illustrates the use of all these concepts in a test scenario.
An adapter for the ebalance-plus data exchange middleware has been implemented
(middleware adapter). This approach allows to treat the data exchange middleware as another
adapter in the same way as an external device is and simplifies the communication between
both sides. Also, an adapter for the specific external device needs to be implemented (external
device adapter). These two adapters are used to model two types of data exchange:

• Get monitoring information from the external device and store it in the

middleware (approach in Figure 10 a): A transfer interaction is used to periodically

transfer information from the external device to the database of the middleware. This

is used to get monitoring information from the external device.

• Configure setpoints in the external device when a request is received in the

middleware (approach in Figure 10 b): The request in the middleware is detected in

the adapter module by means of a data listener configured in the middleware adapter.

The listener handler transforms the request in a call to the specific communication

protocol of the external device. Finally, the result of this operation is written back in the

middleware.

In the proposed architecture, each external device is controlled by an adapter module which
runs in its own process. This allows external devices to be connected/disconnected at runtime
from a running instance of the middleware.

5 Implementation of the data exchange

middleware

5.1 Middleware server

The middleware framework implements a custom socket-based protocol optimized for
performance and support for real-time and polling communication approaches. The protocol
(and its security) is based on the Java implementation of the socket communication. No custom
security code has been written and only the proven and reliable industry standards are used.

Networking layer specification

18

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

The middleware server also embeds the AdminGUI that can be disabled through configuration
options. The Figure 12 presents a detailed overview of the middleware framework architecture.

Figure 12 Middleware framework detailed architecture

The middleware server instance contains modules that communicate with each other to handle
requests sent by the clients and issues requests to other middleware instances or the proxy
server to handle inter-middleware requests. The modules located on the middleware server:

• Access Manager – the module provides functionalities related to access control of

incoming requests. The request processor communicates with this module to check

whether the incoming request can be processed.

• Group Manager – the module keeps track of hierarchy in context of the current middleware

instance – who, is the parent, who are the children, what proxy servers are available. If the

system based on the middleware platform does not have a hierarchy, it is possible to simply

define peers without implying relations.

• Request Processor – the module is responsible for handling incoming requests. The

middleware server can submit requests to this module. The requests are queued and

Networking layer specification

19

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

processed in the order that they’ve arrived. The request processor spawns workers to

handle requests.

▪ Request Processor Worker – is spawned by the Request Processor and is

responsible for handling the incoming request, validating access through Access

Manager, communication with module used to redirect messages to remote

middleware instances.

• Subscription Manager – the module is responsible for variable subscriptions and periodic

notifications.

• Database – The module is responsible for accessing the database. Allows to issue SQL

queries or manage data through defining models and issuing operations on them.

• Variables Database – The module communicates with the database module and is

responsible for any actions related to the variables (write/read/update/etc.).

• Data Interface Server – responsible for receiving requests from clients. The requests are

then forwarded to the Request Processor.

• RelayClient – responsible for communication with other middleware instances and

middleware proxy server.

The diagram presented in Figure 13 shows an example transmission between a service and a
remote middleware (the most complicated scenario on the platform).

Figure 13 Example transmission with a remote middleware

At the very beginning (1), the service connects and identifies with its local middleware and all
middleware server instances connect and identify with the proxy server. Successful
identification creates a persistent communication channel between two participants. After
some time, the service sends a request (2) to its local middleware, containing a single local
write request and a single remote read request. The local middleware server sends a DI_ACK
packet (3) to confirm that the whole request is queued. The local sub-request is handled by
the local middleware (MW_1), while the second (remote) sub-request is sent to MW_2 through
the proxy server. The MW_2 instance sends a DI_ACK packet to confirm that the request was
received. After that, it handles the request and sends the response back to the source
middleware (MW_1) through the proxy server. Once the MW_1 receives the response and all
partial responses are completed, the final response is sent to the service that issued the
request.

Networking layer specification

20

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

5.2 Data Interface

The Data Interface defines available methods (for actions to be performed on the platform)
and ensures that required parameters are passed when sending requests to the middleware
server. The programmer can register listeners to receive notifications about incoming
subscriptions or the connection state of the interface. The interface allows to execute requests
synchronously or asynchronously to support multiple approaches to application development.
The interface allows issuing partial requests which allows to perform multiple actions on the
server through a single request (example communication and partial request shown in Figure
14).

Figure 14 Communication between client and server through Data Interface

Figure 14 shows an example request sent by the client that consists of two partial requests.
Each partial request represents a separate action to be performed. The sub-requests are
processed consecutively, so when one is writing to a variable and then reading from it (in the
same request), the just-written value will be taken into account when reading. The partial
requests can be named. When creating the partial response objects, the middleware will
automatically name the responses with the names given in the Data Interface request.

An example usage of the Data Interface client has been shown in Figure 15. First, the transport
configuration is created. It is possible to specify the target middleware server information and
provide security credentials. After the transport is configured, it can be passed further to create
an instance of the Data Interface. The user can specify the service/stakeholder combination
and register listeners. After the listeners are registered, the authorize() method is called that
initializes the connection and conducts the authorization with the target middleware server.
After the authorization is complete, it is possible to issue requests. The Data Interface allows
to create a single request and state multiple actions (sub-requests) that will be executed
sequentially on the destination server. The response contains multiple sub-responses that
allow to observe the result of the corresponding sub-requests. Each sub-response that carries
more functionality than simple status information, has a corresponding class that allows to
extract the carried information. For example, when reading data from the middleware, the sub-
response is paginated. Through obtaining a VariablePageResponse object, it is possible to
view data on the current page and obtain more information about pagination such as current
page, total rows and more.

Networking layer specification

21

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

String mwHost = ...
int realtimePort = ...
int pollingPort = ...
P3TransportConfig trConfig = P3TransportConfig.fromArgs(mwHost, realtimePort, pollingPort,
P3Transport.SOCKET_REALTIME);
trConfig.setTruststorePath("path/to/truststore");
trConfig.setTruststorePassword("storepass");
trConfig.setKeystorePath("path/to/keystore");
trConfig.setKeystorePassword("storepass");
trConfig.setKeyPassword("keypass");

DataInterface dataIntf = DataInterface.create(trConfig)
 .setDefault(DataField.QUERY_SERVICE, SERVICE_NAME)
 .setDefault(DataField.QUERY_STAKEHOLDER, STAKEHOLDER_NAME)
 .registerConnectionListener(new ConnectionListener() {

 @Override
 public void onConnect(P3Transport transport, boolean isReconnect) { ... }

 @Override
 public void onDisconnect(P3Transport transport, boolean willReconn) { ... }
 })
 .registerShutdownListener(new ShutdownListener() {

 @Override
 public void onShutdown() { ... }
 })
 .registerErrorListener(new ErrorListener() {

 @Override
 public void onError(String errorMessage) { .. }
 })
 dataIntf.registerSubscriptionListener(new SubscriptionListener() {

 @Override
 public void onSubscription(SubscriptionInfo info) { ... }
 })
 .authorize();

if(dataIntf.isAuthorized()) {
 IDataInterfaceRequest req = dataIntf.createRequest();
 req.getSystemStatus(DataInterface.LOCAL).as("status");
 req.read("varName", "stakeholder", DataInterface.LOCAL, null).as("read");
 // Other statements of partial requests

 try {
 IDataInterfaceResponse resp = req.execute();
 SystemStatusResponse statsResp = resp.getFirstNamedAs("status", SystemStatusResponse.class);
 VariablePageResponse pageResp = resp.getFirstNamedAs("read", VariablePageResponse.class);
 // Further operations on partial responses
 } catch (Exception e) {
 e.printStackTrace();
 }
 dataIntf.shutdown();
} else {
 System.out.println("Failed to authorize");
}

Figure 15 Example usage of the Data Interface

5.3 Bootstrapper

The middleware framework also embeds a service bootstrapper that allows to securely run
services in environments that consist of services coming from many sources. The bootstrapper
has been already described with more detail in the deliverable 5.2.

Networking layer specification

22

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

6 Implementation of the adapter

modules
Adapter modules are an abstraction that allows external devices to be connected to the data
exchange middleware. Since most of the behaviour of these modules are the same regardless
of the communication technology of the external device, there is a big part of classes that are
reusable. In ebalance-plus the adapter modules have been implemented in Java and use the
Java middleware client provided as a .jar file to access the middleware API. Typically, an
adapter module is composed of two adapters as depicted in Figure 11.

6.1 Adapter and interactions implementation

As explained in Section 4.2, adapters are data exchange-centred components represented by
the IAdapter interface. In a typical adapter module two adapters are needed:

• The middleware adapter which abstracts the access to the middleware: this

adapter is implemented once and reused by all adapter modules

• One additional adapter for the external device: this is a specific adapter that

understands the communication protocol of the external device.

In the end, an adapter is just a Java class that implements the IAdapter interface presented in
Section 4.3. Although one specific adapter is needed for each external device that will be used,
generic adapters for each communication protocol have been implemented so that specific
adapters can extend the generic adapter with minimal added code. Table 3 summarizes the
generic adapters that have been implemented.

Table 3 Generic adapters

Adapter
Communicati
on protocol

Comments

Modbus adapter Modbus
TCP/IP

It maps a middleware variable to a set of Modbus
registers (each column of a variable is a Modbus
register)

JDBC adapter Generic
relational
database
using JDBC

It maps a middleware variable to a database table
(each column of a variable is a column of a table)

REST API adapter HTTP-based
REST API

Each REST API endpoint is mapped to a
middleware variable

Websocket adapter Websocket Handles the websocket connection and queries
information but the mapping is left to the
corresponding implementation (classes extending
this generic class)

In general, the concept of adapter best suits communication protocols with non-persistent
connections. The module connects momentarily to the external device, obtains the information,
and disconnects. This process is repeated to update the information of the different variables.
This is the default behaviour that is used even for connection-oriented communication
protocols such as websockets.

As for the interaction between adapters, one main type of interaction is used by almost all
adapter which is the “transfer interaction”. The transfer interaction is configured by specifying
a set of variables and a period. The transfer will automatically read the variables from the
source adapter and write them in the destination adapter with the periodicity specified.

Networking layer specification

23

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

6.2 Module abstraction implementation

The adapter module abstraction is implemented by a base class that specific adapter modules
have to extend.

Figure 16 Run method of the generic adapter module

The base class specifies the generic behaviour of the typical adapter module as illustrated in
Figure 16, which shows the actual code of the run method. The following steps are executed
when an adapter module is started:

1. Configure the module

2. Start the middleware adapter

3. Start the specific adapter

4. Configure the transfer interaction

5. Keep the module running until a stop signal is received

The adapter module is ultimately exported to a runnable .jar file that will be executed in the
management unit where the corresponding middleware instance is running. The configuration
of the adapter module is kept in a separate properties file so that changes in configuration can
be made without having to regenerate the jar file. Also, each adapter module produces its own
configurable log files.
By keeping each adapter module in a separate .jar, adapters can be easily started/stopped at
runtime. Also, failures from one adapter module do not cascade to each other. Finally, by
following this approach, each adapter module can be generated and later installed in different
MUs by only changing the configuration file.

6.3 Demo site adapters and modules

In ebalance-plus the data exchange middleware, together with the adapters, will be tested in
different demo sites which are part of work package WP6. Depending on the requirements of
these demo sites different specific adapters will need to be implemented and integrated. Table
4 shows the preliminary list of adapter modules that will be implemented and deployed. It is
important to note that this list can be modified in the future once the list of devices in each
demonstrator is finalized.

Table 4 Demo site adapter modules

Demo site Adapter type External device

UMA REST API Energy meter

UMA REST API PV panels

UMA REST API Smart batteries

UMA MODBUS TCP/IP Power inverter

UMA REST API EV charging station

Networking layer specification

24

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

Demo site Adapter type External device

UMA Websocket HVAC system

UMA REST API Weather station

UNC Database Smart meter, nano grid, power inverter and PV plant

UNC REST API Smart batteries

JUNIA REST API Complete system

DTU REST API Complete system

7 Conclusions
Smart grids are complex system in which a high number of heterogeneous devices need to

exchange information. To simplify the way these devices, communicate a data exchange

middleware has been presented. The middleware provides a data-centric high-level

programming abstraction based on simple operations that is used by all actors in the system

to hide the complexity of the underlying architecture and hardware devices. To integrate

external devices/systems within the middleware an adapter module is used. An adapter

module provides an abstraction over each specific external device and oversees transforming

requests/responses from/to the middleware/device.

Networking layer specification

25

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement N°864283

References
There are no sources in the current document.

