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Summary 
 
This document describes the research on flexibility algorithms carried out in the 
ebalance-plus project.  
 
First (chapter 2), a review and analysis of current state of the art is described, 
addressing local flexibility markets and different approaches regarding ancillary 
services mechanisms considering the target assets and control strategy.  
 
Moreover, one of the main contributions of this research (chapter 3) is an official 
formulation of the flexibility steering signals (control signals that activate the flexibility 
in the customer premises) considering current approaches (OpenADR and USEF) and 
fair principles between the energy customer and the future energy aggregator. 
 
In the context of ebalance-plus project, the flexibility scenarios (use cases) addressed 
in the corresponding demo sites (Spain, Italy, France and Denmark) are formulated 
and described in chapter 4.  
 
Finally, in chapter 5, to support the energy flexibility estimation and management three 
different approaches using artificial intelligence are described.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Disclaimer 
This publication reflects the author’s view only and the European Commission is not 
responsible for any use that may be made of the information it contains. 
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1 Introduction 

1.1 Energy flexibility challenges and needs 

The European Commission (EC) commitment of decreasing carbon emissions by 40% 
(of 1990 levels) by 2030 and reach climate neutrality by 2050 has led to a continue 
increase of the renewable energy sources (RES) share in the electricity sector. The 
uncertain and uncontrollable nature of these resources brings new challenges [1]: 
 

• The variability of RES challenges a reliable grid operation of future electricity 
systems as the grid needs a balance between supply and demand. This 
variability also challenges supply security, requiring higher capacity back-up 
for low RES generation periods [2]. 

• It potentially leads to an increase in the costs of the system maintenance 
and operation which can be passed on to end-users, worsening energy 
poverty situations. 

To solve these issues new sources of flexibility should be used. According to The 
International Smart Grid Action Network (ISGAN), flexibility can be defined as the 
ability of electric systems to manage change [3]. More detailed definitions are given by 
[4] and [1], defining flexibility as the ability to modify the expected consumption and/or 
generation based on a signal.  
 
Flexibility assets include controllable loads, power generation (renewable and non-
renewable) and storage assets [5], [6]. The first one is denominated demand response 
({Citation}DR) and can be also defined as the “...action taken to reduce electricity 
demand in response to price, monetary incentives, or utility directives so as to maintain 
reliable electric service or avoid high electricity prices” [7].  
 
DR together with energy storage could provide flexibility services efficiently [8] and 
may directly contribute to the resilience of future low-carbon electricity systems (Anaya 
& Pollitt, 2021b; Heffron et al., 2021). [3] also mentioned the need of flexibility 
highlighting that DSOs should have new flexibility mechanisms to manage the grid and 
enable the integration of RES avoiding a negative impact in the service reliability and 
quality. 
 
Flexibility can be traded in two ways: within the same local network (peer-to peer) or 
at large scale. In the peer-to peer (P2P) approach, flexibility is traded at the agreed 
price with no need of intermediate actors. On the other hand, the second approach 
requires flexibility markets to trade flexibility at a large scale [5]. 
 
In order for a flexibility market to exist, there must be both consumers of flexibility 
(DSOs/TSOs) and providers of flexibility. Furthermore, to allow all consumers to 
participate in the market without discrimination, flexibility must be managed by market 
rules. 
 
To achieve this, regulation is key. Regarding the current situation in Europe, the EC 
allows DSOs to acquire flexibility using a market-based approach in coordination with 
TSOs [9], especially for local congestion management, which is the most common 
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application for flexibility services [5]. Some recommendations to update the regulation 
are compiled by [3]: 
 

• Implementation of the European Directive 2019/944 [9], article 32 in the 
national regulations. 

• Regulation of the interaction between new flexibility mechanisms and 
existing markets. 

• Integration of access and connection criteria and the different flexibility 
mechanisms. 

• Review of the remuneration framework for DSOs to develop incentives for 
the adoption of flexibility services and encourage efficient development of 
the network. 

The role of the Aggregator can be also helpful for small flexibility providers to 
participate in the market, lowering the risk in case an specific asset is not available [3], 
[6]. Furthermore, [5] emphases the need of a standard methodology. 
 
[10] identified the main flexibility challenges and grouped them in three groups as 
follows: 
 

• Challenges to RES integration: High entry costs, weak participation 
incentives, and high risk perceived by TSOs/DSOs 

• Challenges to TSO/DSO coordination: technical and institutional barriers 
to information sharing and collaboration between TSOs and DSOs 

• Challenges to market design: Alignment of market arrangements and 
product specifications 

Additionally, a local flexibility market has requirements such as identifying the flexible 
resources in the grid, providing hardware and software infrastructures, and determining 
the user engagement method [8]. 
 

1.1 The ebalance-plus ecosystem 

The solutions to be developed within the ebalance-plus project are built around the 
major component of the project – the ebalance-plus energy management platform. The 
hierarchical approach followed in the project allows involving different smart-grid 
innovations (smart production, storage, and consumption technologies, etc.) and to 
realize distributed and scalable energy control. The approach exploits the actual 
topology of the energy grid and makes use of computational elements (management 
units - MUs) that are located on the joints of the grid topology branches, to be closer 
to the monitored and controlled assets, enabling the decision-making process to be 
local. These MUs are located on different levels of the grid and manage all the lower-
level management units, but also additional elements, like sensors and actuators, 
located in their branch (see Figure 1.1). Similar to a fractal, depending on the level of 
the considered MU, the monitored parameters and control tasks are the same, but they 
differ in the scale. This allows developing generic algorithms that can be deployed on 
the MUs in the smart grid in order to realize many different tasks. This allows 
monitoring flexibility-related parameters on different levels of the grid and applying 
local and appropriate actions to unlock the available flexibility. 
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Figure 1.1 The naming and distribution of management units within the energy grid 

The flexibility algorithms proposed in the context of ebalance-plus take advantage of 
the hierarchical architecture and the bidirectional data exchange to propose a trust 
environment where the energy flexibility can be measured and managed by all the 
stakeholders and system users as it is done currently with the power and energy data 
in power systems. 
 

1.2 The ebalance-plus energy balancing platform 

The management units are parts of the distributed energy management platform. 
These exchange the data being the measurements as well as the control signals to 
monitor and control the grid assets. The data exchange is realized based on the 
middleware and the energy management components (like the algorithms) reside on 
top of it. Each management unit expresses the similar architecture of the energy 
management platform, but the exact set of algorithms and other components may differ 
depending on the specific deployment. The generic architecture of the Energy 
Management Platform (EMP) is shown in Figure 1.2 - within the presented 
management unit the EMP consists of four components: the GUI to interact with the 
user, the EMP Coordinator that manages all the other EMP components, and two 
components that perform the energy management related to energy flexibility and 
resilience. All these components exchange data using the middleware. They all also 
interact with the grid assets (via measurements and control signals) using adapters 
(that are not reflected in this figure). 
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Figure 1.2 The generic architecture of the ebalance-plus Energy Management Platform 

The details on the Energy Management Platform are provided in ebalance-plus 
deliverable D4.3. 
 

2 State of the Art 
In this section the state of the art of solutions and mechanisms related to flexibility-
based market is presented, i.e., local flexibility markets, peer-to-peer and ancillary 
services. The first step to develop new algorithms or mechanisms for energy or 
flexibility management is to identify the current market needs. The ebalance-plus 
flexibility algorithms consider the state of the art to align the energy management 
platform with current trends but preserving the market-agnostic approach to adopt 
future changes in regulations and make it as generic as possible to satisfy the needs 
or current and future market players (energy aggregators and balance responsible 
parties). Flexibility-based energy markets evolve quickly as they have been identified 
as strategic for the decarbonisation and energy transition of Europe, thus the timeline 
of information presented should be considered.  
 

2.1 Local energy flexibility markets 

Local Flexibility Markets (LFMs) are the means through which it is possible to unlock 
the flexibility of Distributed Energy Resources (DERs) at the distribution level [11]. 
Indeed, in the last years the aggregators of large portfolios of small scale DERs have 
started to participate into energy markets [12]. Many research projects studied the way 
to provide such energy flexibility in buildings and smart energy grids, mainly from the 
electrical engineering of energy systems and energy storage perspectives. Typical 
technical solutions of energy flexibility include for example the control of heat pumps, 
district heating, HVAC, photovoltaic and lighting systems with energy flexibility sources 
coming from batteries, water storage, thermal storage in the building material [12]. 
 
The LFMs appears to be one of the better flexibility solutions in the EU framework, 
indeed the EU advices to the Distribution System Operator (DSO) to acquire the 
necessary flexibility through market-based solutions [13]. According to [14], the LFMs 
will be able to operate in parallel with the pre-existing energy markets and in this 
context, both aggregator and DSO will have to negotiate the flexibility [14]. In [11] an 
overview of how an LFM would work is provided. First of all, it is focalized on the need 
of a reliable smart meter infrastructure; moreover in [11] it is also underlined how in the 
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current regulatory framework, the DSO flexibility is not incentivized to adopt flexibility 
operation, so the regulatory framework needs to be changed. It has been shown how, 
to operate efficiently the distribution network, the flexibility services can be required to 
the LFM when it necessary to solve some issues. 
 
To manage DERs, aggregators need particular optimal management strategy; 
furthermore, they need to estimate the supply curve, also to quantify the costs of the 
different services [11]. The DSO requires a probabilistic assessment of the state of the 
distribution network, so that a cost function through which operate can be obtained. In 
[11] the market clearing mechanism are analysed, they are referred to the flexibility 
energy markets through capacity limitation services, demonstrating that the pay as bid, 
uniform pricing and Vickrey-Clarke-Groves [15] auction mechanisms do not meet the 
critical economic properties for these markets. For this issue, an alternative 
mechanism is proposed; it provides a fair compromise between budget balance, 
compatibility of incentives and individual rationality [11] 
 
As expressed in [16], LFMs can help to monitor energy flows, motivate changes in 
prosumer energy supply and demand, achieving local energy balance, and 
optimization of electricity flows. In [16] a decentralized flexibility market, based on 
blockchain has been proposed; it allows to the small prosumers to exchange in a peer-
to-peer way their flexibility, in terms of load modulation, concerning the energy baseline 
profiles. An energy flexibility token has been defined to digitize prosumers flexibility, 
allowing to be exchanged on the market as asset and smart-contract for decentralized 
market operations, including features such as placement of flexibility offers, trading 
session management and different energy flexibility regulations [16]. The proposed 
energy flexibility market, blockchain based, allows participants to exchange their 
flexibility in a P2P way. It facilitates the interaction of two types of market participants: 
both flexibility buyers and sellers. The aggregators, the DSO and TSO can be indicated 
as flexibility buyers, while the prosumer can be seen as flexibility sellers, because they 
adapt their energy profile so to offer flexibility [16]. 
 
Local markets provide an environment in which prosumers can interact with each 
other, either directly through peer-to-peer (P2P) markets, or indirectly through 
community-based markets [17]. In the hierarchical approach proposed in [17] for local 
energy and the exchange of flexibility between prosumers in distribution networks, the 
prosumers are able to exchange energy via P2P mode and negotiate flexibility in the 
local energy market to maintain the constraints of the distribution network. The 
proposed method allows to the prosumer to manage own resources and to participate 
to a P2P market. The local market operator manage the P2P market for the exchange 
of energy among the prosumers and collaborates with the DSO to distribute the 
flexibility provided by the prosumers [17]. 
 
There are several obstacles to fully exploiting the flexibility potential of small 
prosumers, they have been summarized in several papers [14], [16], [18], [19]. Such 
obstacles can be represented by technological barriers, that allows to shift from the 
traditional market to the decentralized one. They can be resumed in: economic and 
regulatory barriers, which consist of actual business models that are unable to give 
adequate value to the flexibility of small-scale prosumers and, at the same time the 
current regulatory framework needs to be adequate; organizational barriers affecting 
user involvement [16]. Moreover, [14] underlines that baseline services in local 
flexibility markets are not compatible with the active participation of DERs to energy 
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markets, introducing unnecessary uncertainties, administrative burdens, risks and 
potential conflicts of interest between different stakeholders. While the obstacles that 
occur in the implementation of the flexibility market shown in [19]refer to 
standardization problems; starting from this issues, in [19] a hybrid market model 
comprising elements of a local flexibility market and a local energy market was 
developed. 
 
LFM are already implemented in several European countries, such as the United 
Kingdom (UK), Germany, the Netherlands, Sweden, or Norway. In addition, there are 
some local market platforms currently in use, for example, Piclo Flex [20], GOPACS 
[21] and NODES [22]. In order to find different design alternatives, several European 
H2020 research projects like Integrid [23], EUniversal [24], CoordiNet [25] and 
INTERRFACE [26], among others, are exploring different solutions [3]. 
 
In the UK five DSOs have implemented four different flexibility services in the market. 
These services are [3]: 

1. Sustain: System support service under normal network operating conditions. 
2. Secure: System support service when the safety margins have been exhausted. 
3. Dynamic: System support service when a failure has occurred in any element. 
4. Restore: System support service when a service restoration is required. 

To sign a flexibility contract, the DSOs have developed procedures for comparing the 
value provided by each offer received against the traditional network reinforcement 
alternative. To streamline and optimize the contracting and operation process of 
flexibility services, they use two platforms: Piclo Flex [20] for the publication of 
requirements and verification of offers, and FlexiblePower API [27] for the automation 
of dispatch and settlement of services [3]. 
 

2.2 Energy flexibility for ancillary services  

In this section, some of the existing algorithms for procuring energy flexibility of end-
users for grid services are briefly described. The algorithms and studied cases are 
chosen such that different flexible resources, ancillary services, and control strategies 
are reviewed. 
 

2.2.1 Balancing services 
 
In the last years the use of flexibility resources to provide balancing services has 
become one of the first issues of electric energy markets. Various uses to exploit 
flexibility resources for balancing services are described below. 
 
Balancing markets must not be considered individual energy markets, but as part of 
different kind of electricity markets, like the day-ahead energy market or the short-term 
or real-time electricity markets. In particular, the links among the short-term markets 
provide alternatives for the commercialization of energy flexibility and motivate the 
bidding strategies of balance service providers [28]. Moreover, to improve the 
performance and competitiveness of balancing markets, the European Union 
introduced a common market for balancing energy, that is usually traded with the 
balancing capacity [29], [30]. This autonomous balancing energy market allows the 
participation of many providers that are configured as Balancing Responsible Parties 
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(BRP) and other Balancing Service Providers (BSP) with available flexibility that can 
submit voluntary offers on demand. In this context, several authors have proposed 
innovative ways for bidding, scheduling, aggregation of customers, estimation of 
flexibility, etc. 
 
Innovations in bidding strategies 
 
In [30] a model of agents’ interdependent bidding strategies in the balancing capacity 
and energy markets is proposed, where machine learning algorithm are employed, in 
particular two collaborative reinforcement-learning algorithms are used. The results of 
the proposed model show significant efficiency gains in the balancing energy market, 
introducing voluntary bids even in highly concentrated markets and at the same time, 
offering a new value to short-term flexibility providers. 
 
In [31] a real time bid-less market is proposed; it is useful to eliminate the barriers for 
small users, both consumers and producers to provide services to the system. Starting 
from the DA energy market results, if no balancing services are required, the price is 
that determined from the DA market, on the contrary the TSO intervenes to minimize 
the cost for the balancing power and determining the necessary power from the market 
to provide the entire services 
 
Innovations in aggregation of customers 
 
In [32], [33] a mixed-integer distributed approach to aggregation of prosumers to 
provide balancing services has been proposed. It considers a number of prosumers 
aggregated by a service provider to be able to offer a defined flexibility degree and to 
make available a power variation in a defined time interval, after that the TSO (or other 
grid operator) requires explicitly such variation.  
 
In [33] it is defined how the service provider can distribute in an optimal way the 
flexibility requests to the prosumer and at the same time provide the service requested 
by the TSO. The provision of balancing services to the TSO is analysed, with particular 
attention to the provision of services through an aggregation of prosumers rather than 
a big industrial entity. The main aim is to elaborate an algorithm to coordinate a number 
of users as big as possible, satisfying the flexibility requests of the TSO. The proposed 
strategy is based on a Mixed-integer linear programming formulation of the problem 
and on its solution using distributed computations. The implemented approach is 
scalable since it decomposes the overall problem into problems that use decision 
variables related to the prosumers, it provides a solution to the privacy-preserving 
issue because the users have not to share their daily behaviour.  
 
In [34] a review on the balancing flexibility in terms both of flexibility products and 
flexibility market design is carried out. Moreover, it underlines how it is possible to 
analyse the energy flexibility for balancing services from different point of view, that 
can be those of the aggregator or balancing service provider, of the distribution or 
transmission grid operator. 
 
New mechanisms and approaches to integrate DER and EV 
 
Until today, the flexibility services that can be offered to the TSO for power balancing 
are provided through big thermal power plants, hydro power plants or DR of big 
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consumers [34]. It depends on the dimension of requested power balancing services. 
At the same time, the DSO can provide flexibility services for local balancing using 
Distributed energy resources, connected at the distribution grid [34]. 
 
Considering the TSO, although the provision of services is now consolidated at this 
level, in all the world new products are of interest for new and existing energy market. 
In the USA energy market, for instance, new ramping capacity products from the 
existing traditional suppliers are being considered, with the main objective to integrate 
them into the existing dispatching procedure [34]. In many other countries, such as in 
Italy, the DSO could provide flexibility services for the transmission grid using DER. In 
this context, the coordination between TSO and DSO become very important, in 
particular to avoid any kind of problem to the distribution and transmission grid. The 
DSO is therefore called upon to provide new functions and integrate them into the 
existing technical and regulatory scenario. In fact, as described in [35], in the 
Californian electricity system, flexibility was proposed in terms of fast ramping capacity, 
that could be supplied in 5 min, that is only provided from the supply side at the 
transmission grid.  
 
The [36] proposes the use of EV to provide flexibility ramping in markets. In this work, 
EV participation is analysed as standalone aggregated EV flexibility providers, or by 
cooperating with traditional generators to improve their ramp capabilities. On the other 
hand, in [37] the integration of electric vehicles into the distribution network is 
considered to provide flexibility services, highlighting the possible barriers 
encountered. 
 
Innovations in aggregation mechanisms 
 
In [38] an optimization model for a load aggregator has been proposed; in particular, 
the aggregator is involved both in the electricity energy market and in the regulation 
capacity market. The aim is to minimize the total cost allocating the consumer flexibility 
opportunely among the different markets, managing the resources on the distribution 
grid and coordinating opportunely the TSO and DSO operation. 
 
In general, flexibility demand for balancing services does not depend on the 
geographical location of the resource, so it could be interesting to defer the 
investments using the services provided by the DSO at the distribution grid and at the 
same time using the advantage of the local market [34] 
 
The local market operator in [39], in addition to the energy profiles, receives the 
different flexibility offers from the aggregators and at the same time it receive flexibility 
requests from DSOs and BRP. Then the DSO uses a local dispatching strategy to 
solve the remaining security network issues. 
 

2.2.2 Providing balancing services by thermostatically controlled 
loads (TCLs) using direct load control 

A method for utilizing the flexibility of a group of TCLs for providing balancing services 
is suggested in [40]. The method is based on direct load control and is presented in 
Figure 2.1. The aggregated power (𝑃𝑎𝑔𝑔(𝑡)) of all TCLs are compared with a defined 

baseline (𝑃𝑏𝑎𝑠𝑒(𝑡)) for each time interval. The difference between aggregated power 
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and baseline (𝛿(𝑡)) is compared with the required flexibility for the balancing service at 

that moment (𝑟(𝑡)). If 𝛿(𝑡) < 𝑟(𝑡) more electricity should be consumed and if 𝛿(𝑡) ≥
𝑟(𝑡) less electricity should be consumed. Priority stack controller is used to determine 
which TCLs should be ON or OFF to increase or decrease energy consumption. The 
TCLs whose temperature is close to the minimum temperature have higher priority to 
be turned on and TCLs with temperatures close to the maximum temperature have 
higher priority to be turned OFF.   

 
Figure 2.1 Schematic representation of the proposed direct load control approach for providing 
balancing services.  

2.2.3 Procuring energy management and frequency control services 
from energy storage systems (ESSs) 

 
The fast dynamics of ESSs and their capability of both consuming and generating 
energy allows us to use them as frequency containment reserve (FCR). In [41], the 
authors propose a methodology to assess the techno-economic performance of 
photovoltaic household prosumers that jointly provide self-consumption enhancement 
and FCR. Battery and supercapacitor are used as ESSs. A simplified block diagram of 
the proposed method is presented in Figure 2.2.  
As shown in Figure 2.2, the building energy management system receives information 
about output power of a photovoltaic (PV) panel, energy consumption of the building, 
and status of the ESSs and generates signals for controlling the battery and 
supercapacitor. On the other hand, FCR provision system measures the frequency 
continuously. If the frequency deviates from a predetermined dead band, the FCR 
provision system creates control signals for battery and supercapacitor considering the 
prequalified FCR power and special characteristics of the battery and supercapacitor. 
Since the aggregated control signals obtained from energy management and FCR 
service may result in violations from maximum or minimum state of charge (SOC) limits 
of the battery or supercapacitor, a SOC management system is designed to control the 
SOCs and makes changes if necessary.    
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Figure 2.2 Block diagram of the proposed method for utilizing the flexibility of ESSs for FCR service 

 

2.2.4 Aggregation of electric vehicles (EVs) for providing primary 
frequency control service 

 
In [42], the authors propose a method for utilizing the flexibility of a group of EVs for 
primary frequency control through an aggregator. The block diagram of the introduced 
method is depicted in Figure 2.3. The main difference between the proposed method 
for EVs and conventional power plans is defining the participation factor 𝐾𝑖 for each 

EV 𝑖. This factor determines how ready an EV is to provide service for the grid and 
depends on the operation mode of the EV i.e., charging, or idle mode, and SOC of the 
battery. As shown in Figure 3, when the EV is in charging mode, the value of the 
participation factor is small for low and high SOCs and equal to one for other situations. 
If the EV is in idle mode, the participation factor is small for low SOCs and then is equal 
to one in other cases. The battery charger controller block is responsible for satisfying 
the upper and lower bounds of consumed power by EVs.  
 

 
Figure 2.3 Process of utilizing EVs’ batteries for primary frequency control ancillary service. 

Similar approaches are suggested in other studies to use the flexibility of EVs for 
frequency-related ancillary services. In [43]–[45] fuzzy logic is used to find the optimal 
control strategy for EVs that provide primary and secondary frequency control services. 
In [46] a robust mixed 𝐻2/𝐻∞controller based on static output feedback is designed to 
support the LFC services along with different uncertainties. In [47] two controllers are 
proposed for using the aggregation of EVs for primary frequency control in an industrial 
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microgrid equipped with PV panels and wind farms. This method considers different 
charging profiles, the SOC of electric vehicle batteries, and a varying number of electric 
vehicles in an electric vehicle fleet. A non-linear model-free approach is introduced in 
[48] to use the flexibility of EVs for secondary LFC in standalone micro-grids. 

 

2.2.5 Procuring the flexibility of hybrid PV/battery systems for 
congestion management in the distribution grid 

 
CONSORT project is one of the successful examples of using price-based methods 
for congestion management in distribution grid using the flexibility of PV/battery 
systems [49]. This project has been implemented in Bruny Island (Australia). The 
schematic representation of the introduced algorithm is presented in Figure 2.4. Grid 
and weather data are collected by a cloud server and load patterns are forecasted 
every 5 minutes. The optimal power flow (OPF) problem is solved in the server 
covering next 24 hours using load forecasts. From this solution, network feasible real 
and reactive powers are sent to each customer as a request alongside the relevant 
standing locational marginal prices (LMPs). Energy management systems (EMSs) 
solve the customer problems by optimizing their DER use in response to the LMPs and 
support power requested by the cloud server. Their best response is sent back to the 
server, where the LMPs are then updated to reflect the changes to the network use. 
The negotiation iterates between end-users and the server until the algorithm identifies 
convergence to a level of support where the network’s constraints are satisfied, and 
customers are happy with the offered LMPs. 
 

 
Figure 2.4 The proposed market-based mechanism for congestion management in the CONSORT 
project 

 

2.2.6 Utilization of EVs’ flexibility for congestion management in the 
distribution grid 

 
An algorithm is proposed and evaluated in [50] to use the flexibility of EVs for 
congestion management. The Block diagram of the proposed algorithm is presented 
in Figure 2.5. A market is defined in this method that operates under the supervision 
of DSO. This market penalizes the congestion in the grid and creates shadow prices 
(monetary value assigned to currently unknowable or difficult-to-calculate costs in the 



Report on algorithms to unlock flexibility in electric distribution grids 
30/7/2022 

 

19 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement N°864283 

absence of correct market prices) for end-users that force them to reschedule the EV 
charging plans such that the grid congestion problem is solved. 
 
According to the proposed method, the EV owner selects the desired charging 
requirements, and the EV controller generates the charging schedule based on, e.g., 
the charging least-cost strategy, the dumb charging strategy, etc. The charging 
schedule is sent to the fleet operator. The fleet operators aggregate the charging 
schedule from their contracted EV owners and submit the aggregated charging 
schedule to the DSO. The DSO runs load flow calculation and sends the results to all 
fleet operators. If congestion exists, the fleet operators submit the charging schedule 
to the market operator. The Market operator sends the shadow price to the fleet 
operators, and then the fleet operators re-submit the charging schedule to the Market 
operator until the shadow price is converged. The fleet operators send the shadow 
price to all the EV controllers. The EV controller updates the charging schedule based 
on the new shadow prices. This process is repeated until the congestion is eliminated 
in the planning period. The bids that do not cause any congestion are submitted to the 
electricity spot market. 

 
Figure 2.5 Proposed algorithm for congestion management using EVs 

Congestion management using EVs is investigated in other studies, too. In [51] power 
distribution factors are used to determine the amount of energy that a specific EV 
should contribute to alleviate the congestion in a line. In [52] a decentralized control 
strategy is proposed for the optimal scheduling of the energy charging of a fleet of EVs 
while considering congestion management. The scheduling problem aims at ensuring 
a cost-optimal profile of the aggregated energy demand and at satisfying the 
operational constraints of power grid components and EV locations. The dynamic 
subsidy is a locational price paid by the DSO to its customers to shift energy 
consumption to designated hours and nodes. A dynamic subsidy method is proposed 
in [53] for congestion management in the distribution grid in presence of EVs and Heat 
pumps. 
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2.2.7 Flexibility Function method for price-based flexibility 
procurement 

A methodology is proposed by Rune, et al. [54] to estimate the energy flexibility of 
buildings as a dynamic function called the Flexibility Function (FF). The FF receives 
penalty signal data in past time intervals and external variables such as ambient 
temperature and gives the amount of energy flexibility we can get from the building for 
each penalty signal. Three different penalty signals can be defined as follows: 

▪ Real-time CO2. If the real-time (marginal) CO2 emission related to the actual 
electricity production is used as a penalty, then, a smart building will minimize 
the total carbon emission related to the power consumption. Hence, the building 
will be emission efficient. 

▪ Real-time price. If a real-time price is used as a penalty, the objective is to 
minimize the total cost. Hence, the building is cost-efficient. 

▪ Constant. If a constant penalty is used, then, the controllers will simply minimize 
the total energy consumption. The smart building is, then, energy efficient. 

The mathematical representation of FF is as below: 

𝑌𝑡 = ∑ ℎ𝑡(𝜃)𝜆𝑡−𝑖

∞

𝑖=1

+ 𝑅𝑡 

Where 𝑌𝑡 is the estimated load in response to penalty signal 𝜆𝑡. ℎ𝑡 is the impulse 
response function, 𝜃 is the decision variable, and 𝑅𝑡 represents the non-responsive 
load. Historical data are used to determine the parameters of the flexibility function.  

The FF can be very useful for generating suitable price signals for procuring a desirable 
amount of flexibility in indirect price-based control methods as depicted in Figure 2.6. 

 
Figure 2.6 Application of FF in procuring flexibility 

2.2.8 Packetized energy management 

Packetized energy management (PEM) is a recently introduced scheme that defines 
a framework for interaction between aggregators and end-users for procuring flexibility 
services from the distribution grid level [55]. The basic structure of this framework is 
depicted in Figure 2.7(a).  At the end-user level, the state of each controllable device 
is observed, and the ON/OFF status of the device in next time interval is determined.  
If the device is supposed to be ON in next time interval, an access request is sent to 
the aggregator. The aggregator collects all requests received within a specific time 
interval, e.g., 10 sec, and informs the availability of flexible loads to the DSO. DSO 
estimates the system state in the next time intervals considering the requests received 
from aggregators and sends dispatch signals to aggregators. The aggregator decides 
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about accepting or rejecting the access requests. If rejecting the access request leads 
to violating the operational constraints of a device, the end-user can opt out of the PEM 
scheme.    

One of the main features of this scheme is the proposed method for deciding about 
sending the access request at the end-user level. Instead of using complicated 
optimization approaches, it is suggested to decide about the ON/OFF status of the 
device using the probability distribution function (PDF) of sending access requests. An 
illustrative example of this method for a swimming pool heat pump application is 
depicted in Figure 2.7(b). However, the method can be applied to other controllable 
devices in buildings. At each time interval, a random number, e.g., A1, A2, B1, and B2, 
is generated. Then, considering the water temperature, this random number is 
compared with the PDF curve. If the generated random number is below the PDF curve 
the access request signal will be sent to the aggregator. As shown in Figure 2.7(b), 
when the water temperature is low (TA), the access request signal will be generated 
for both random numbers A1 and A2, but when the water temperature is high the access 
request signal will be generated only for random number B1. Using this approach, the 
probability of sending access requests decreases as the water temperature increases. 
The PEM scheme does not consider electricity price in the decision-making process, 
so it is not cost-efficient, however, it is easy to implement, and efficient in terms of 
procuring flexibility services for the grid.    

 
Figure 2.7 a) The required framework for implementing the PEM approach and b) the principle of the 
PEM  

2.2.9 Market-based flexibility trading in +CityxChange project 
 
In the +CityxChange project (H2020 Grant Agreement No. 824260), a market-based 
platform is proposed for trading flexibility among end-users or between end-users and 
DSO [56]. In this method, the DSO can be a market operator or a market player. In 
case the DSO is the market operator, it can monitor the grid continuously and allows 
flexible transactions among market players i.e., end-users of aggregators, that help 
solve grid issues. If the DSO is a market player, a local market operator manages the 
local flexibility market (LFM).  In this case, the DSO can solve grid congestion or 
voltage regulation issues in the local grid by sending flexibility requests to the LFM as 
shown in Figure 2.8(a). The structure of this market is similar to the day-ahead market 
where buyers and sellers of flexibility can submit their bids and offers, and the market 
is cleared by the market operator using a uniform pricing method. The market clearing 
process is illustrated in Figure 8(b). More details about the proposed market structure 
can be found in the Deliverable D1.1 [8] and [56]. 
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Figure 2.8 Project +CityxChange a) proposed market framework for trading flexibility, b) market-
clearing method 

 

2.2.10 A flexibility market alongside existing markets proposed 
in the NODES project 

 
In the NODES project, it is suggested to have a central flexibility market in parallel with 
the day-ahead and reserve market [57]. A schematic diagram of this system is 
presented in Figure 9. Aggregators, retailers, and service providers participate in this 
market on behalf of end-users, and DSO, TSO, and BRPs are the buyers of flexibility. 
The flexibility bids in this market are tagged locationally which gives them to use for 
both central and local flexibility services. The TSO can use the flexibility bids for 
providing balancing ancillary services and the DSO can utilize local services such as 
distribution congestion management. BRPs can also use this available flexibility to 
reschedule their portfolio and retrade flexibility with other BRPs. More details about the 
proposed approach can be found in the [8], [57] 

 
Figure 2.9 A proposed market mechanism for utilizing the flexibility for central and local ancillary 
services. 

3 Definition of flexibility steering 

signals 
 

3.1 Official approaches 

3.1.1 OpenADR 
 
OpenADR is an open standard for communication of DR and Distributed Energy 
Resources (DER) signals from providers or Virtual Top Nodes (VTN) to customers or 
Virtual End Nodes (VENs) using a common language [58]. This standard is based on 
Energy Interoperation v1.0 (EI) from OASIS (Organization for the Advancement of 
Structured Information Standards) [59]. 
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A diagram of the different types of nodes and the information paths between them is 
shown in ¡Error! No se encuentra el origen de la referencia.. In this diagram, it can 
be seen that a VTN can communicate to one of more VENs. Furthermore, there can 
be intermediate nodes that act as VEN and VTN (Aggregated Loads). 

 
Figure 3.1: OpenADR diagram [58] 

This standard can help to increase the integration of DER into the grid by lowering 
costs, assuring interoperability, increasing the reliability and enhancing the flexibility 
[60]. However, the implementation of OpenADR is not straightforward and its 
characteristics, such as event signals or report formats, must be adapted for the 
different DR programs [61]. For this, the “OpenADR 2.0 Demand Response Program 
Implementation Guide” [61] includes a list of event signals (shown in ¡Error! No se 
encuentra el origen de la referencia.) and specific templates for each of the following 
DR programs: 

• Critical Peak Pricing 

• Capacity Bidding Program 

• Thermostat Program/Direct Load Control 

• Fast DR Dispatch/Ancillary Services Program 

• Electric Vehicle (EV) DR Program 

• DER DR Program 

Table 1: OpenADR signals (OpenADR Alliance, 2016) 

Signal Name Signal meaning 

BID_ENERGY Amount of energy from a resource that was bid into a 
program 

BID_LOAD Amount of load that was bid by a resource into a program 

BID_PRICE Price that was bid by the resource 

CHARGE_STATE State of energy storage resource 

DEMAND_CHARGE Demand charge 

ELECTRICITY_PRICE Cost of electricity 

ENERGY_PRICE Cost of energy 
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Signal Name Signal meaning 

LOAD_CONTROL Set load output to relative values 

LOAD_DISPATCH This is used to dispatch load 

simple Depreciated - for backwards compatibility with A profile 

SIMPLE Simple levels (OpenADR 2.0a compliant) 

 
[62] stated that even though the Open ADR protocol is very “general” it can be applied 
to many different DR programs and many different architectures, which offers a 
significant range of possibilities. This is highlighted in the implementation guide 
elaborated by the Sacramento Municipal Utility District (SMUD), where they included 
nine different use cases [63]. Furthermore, this standard has been implemented in 
several EU projects such as Orchestrating Smart Charging in mass Deployment [64], 
Holisder [65], FLEXcoop [66] and DELTA [67]. 
 
Regarding the flexibility calculation, in their study, [62] investigated a DR solution 
based on the OpenADR standard. According to their approach, the flexibility offers 
were calculated as follows: 

• Power estimation: at the start of the day, the Building Management System 
(BMS) estimates the power consumption and generation (if any). This results 
in the maximum and minimum values for each of the hours of the day. 

• Baseline calculation: the baseline is calculated using the mean of 
consumptions of previous days for each hour. 

• Flexibility calculation: the flexibility is calculated as the baseline minus 
maximum expected consumption. 

 

3.1.2 USEF 
 
The Universal Smart Energy Framework (USEF) was founded by seven companies 
(ABB, Alliander, DNV, Essent, IBM, ICT Group and Stedin) with the purpose of 
providing the market structure, rules and tools to support adequate energy flexibility 
trading with benefits to all stakeholders [6]. The main benefits of the USEF are [6]: 
 

• It supports the implementation of the EC’s directive on electricity market 

design with respect to demand-side participation. 

• It supports smart energy transition through innovation, integration and scaling. 

• It reduces the cost to connect different technologies and projects to the energy 

system through standardization. 

The time granularity used for forecasts, flexibility offers, etc. agrees with the imbalance 
settlement period (ISP) which is 15 minutes in most European countries. Flexibility is 
defined as the deviation between the actual power consumption/generation and the 
estimated power or baseline. The USEF originally assumed that the baseline is a 
forecast provided by the Aggregator, which is known as nomination or D-prognosis. 
However, other baselines based on a measurement (MBMA-method), or a 
mathematical formula can be also used. The flexibility is expressed in power (W) while 
the activation is typically expressed in energy (kWh) [6], [68]. 
 
The framework defines different roles and flexibility services for both implicit flexibility 
and explicit flexibility. In addition, different remuneration types are considered. 
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3.1.2.1 USEF Roles 
 
The roles defined by the USEF are listed below [6]: 

• Active Customer: consumes, generates and/or stores electricity 

• Aggregator: accumulates flexibility from several Active Customers 

• Supplier: supplies energy to its customers 

• Balance Responsible Party (BRP): is contracted by the supplier and it is 
responsible for the imbalances in the electricity system. 

• Distribution System Operator (DSO): operates and maintains the distribution 
system in a certain area, ensuring the long-term ability of the system. 

• Transmission System Operator (TSO): transports energy in a certain area 
keeping the system in balance. 

• Producer: feeds energy into the grid. 

• Energy Service Company (ESCo): offers energy-related services to Active 
Customers. 

• Trader: buys and re-sells energy in the market 

• Exchange: provides brokering between electricity Traders, Suppliers, 
BRPs and Aggregators. 

• Common Reference Operator (CRO): is responsible for the information 
regarding connections and congestion points in the network. 

• Metered Data Responsible (MDR): validates measured data. 

• Imbalance Settlement Responsible (ISR): establishes and communicates the 
realized consumption and production volumes per ISP. 

• Balancing Service Provider (BSP): provides balancing services to TSOs. 

• Congestion Management Service Provider (CMSP): provides constraint 
management to a DSO or the TSO. 

• Capacity Service Provider (CSP): provides adequacy services to either the 
TSO or a BRP. 

 

3.1.2.2 USEF Flexibility Services 
 

3.1.2.2.1 Implicit Flexibility 
 
The flexibility is considered implicit when the Active Customers adapt their 
consumption/generation based on variable tariffs. The USEF defines four different 
implicit flexibility services [6]: 
 

1. Time-of-use (ToU) optimization based on load shifting from high to low-price 
intervals. 

2. In-home self-balancing based on the difference in the prices for supply from 
the grid and feed-in to the grid. 

3. kWmax control based on reducing the maximum load (peak shaving) within 
a predefined period. 

4. Emergency power supply for islanding during grid outages. 

 

3.1.2.2.2 Explicit Flexibility 
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The flexibility is considered explicit when the Active Customers adapt their 
consumption/generation based on requests from the DSO/TSO via the Aggregator. 
The USEF defines four different groups of explicit flexibility services [6]: 

1. Wholesale services: including Day-Ahead Intraday and generation 
optimization and self-balancing services. 

2. Constraint management: including voltage control, grid capacity and 
congestion management and controlled islanding and restoration. 

3. Balancing: to restore system frequency to its nominal frequency of 50 Hz. 
Balancing services include Frequency Containment Reserve (FCR), Automatic 
Frequency Restoration Reserve (aFRR), Manual Frequency Restoration 
Reserve (mFRR) and Replacement Reserve (RR). 

4. Adequacy: to increase security of supply in the long-term. Adequacy services 
include capacity markets, capacity payments, strategic reserves and hedging. 

3.1.2.3 USEF Flexibility Remuneration 
 
The USEF considers two types of flexibility remuneration: 

• Availability remuneration: the Aggregator receives a fixed price for 
availability of capacity but can also suffer from penalties if the delivery 
requirements are not met. 

• Activation remuneration: based on the requested or activated volume of 
energy (kWh) or power (kW). The calculation of the activated volume 
depends on the baseline calculation methodology chosen. 

3.2 ebalance-plus proposition 

The ebalance-plus consortium has considered a priority the definition of a consistent 
flexibility measurement. The IEA defines the energy flexibility as “the extent to which a 
power system can modify electricity production or consumption in response to 
expected variability or otherwise”. According to this definition, the flexibility is dynamic 
or, in other words, it is time dependent and any interaction with a system trying to 
modify its behaviour, flexibility changes. Therefore, the energy flexibility cannot be 
considered a commodity as it is, what makes the market acceptance difficult for two 
main reasons: 
 
(1) Estimation accuracy. In general, any energy system can be composed of 
consumption loads, generation and storage units, whose flexibility can be estimated 
with prediction models separately. The flexibility, both power and energy at any time is 
the aggregation of the variation extent of generation and consumption predictions and 
the charging/discharging operation scheduled by the storage units. 
 

𝑃𝑓𝑙𝑒𝑥 = ∆𝑃𝑐𝑜𝑛𝑠 + ∆𝑃𝑔𝑒𝑛 + ∆𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒  (𝑃𝑜𝑤𝑒𝑟 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦) 

𝐸𝑓𝑙𝑒𝑥 = ∆𝐸𝑐𝑜𝑛𝑠 + ∆𝐸𝑔𝑒𝑛 + ∆𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦) 

 
The ∆𝑃𝑐𝑜𝑛𝑠 (increment of power consumption) is only possible if energy loads can be 
interrupted or shifted, ∆𝑃𝑔𝑒𝑛 (increment of energy generation) is only possible when 

generation system (especially power inverters) can cut the rated power (as known as 
power curtailment) and ∆𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (increment of power) is in general possible if storage 

system are controllable and manufacturer’s constraints are respected (e.g., number of 
charging cycles per day). 
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At first, the estimation of the energy flexibility can be considered a matter of the 
accuracy of prediction algorithms for consumption and generation units and 
optimization algorithms regarding storage units. The case of energy storage is the 
simplest, as these systems are programmed and optimised on the basis of technical 
and economical requirements. On the other hand, in the case of generation systems, 
their estimation is also possible if the prediction models (e.g., weather predictions in 
case of renewable sources) and systems are adjusted accordingly. The main drawback 
is the building energy consumption, especially regarding HVAC and domestic hot 
water (DHW), which represent the highest term in energy bills. 
 
The HVAC consumption depends mainly on the building occupancy, outdoor 
conditions, performance operation of equipment and the building components 
(geometry, materials, workmanship, among others) that characterize the building 
thermal inertia. This means that if some arbitrary interruption of the HVAC operation 
happens to modify power or energy consumption, building occupants can become into 
discomfort levels. On the other hand, the energy supply to keep building comfort 
thresholds may be assumed as constant over a day, thus the energy saved in some 
period must be consumed afterwards to keep comfort conditions (with higher or lower 
costs). Therefore, to exploit the energy flexibility of HVAC systems, it is necessary two 
conditions: 

• Enough building thermal inertia (i.e., slowly evolution of indoor temperature) to 
provide a significant energy or power flexibility without compromising comfort 
levels. 

• Models and algorithms predicting accurately the indoor conditions anytime 
under some operation change. 

First, building HVAC must have enough capacity to balance the potential temperature 
deviations over the day. For example, it is necessary more energy to reduce the indoor 
temperature 1º C if the outdoor temperature is 40º C instead of 25º C, or if solar 
radiation is the main energy flow or if indoor conditions (e.g., occupancy) increase the 
temperature naturally. Therefore, the energy flexibility depends on the HVAC rated 
capacity and outdoors conditions. This property must be considered in thermal 
modelling, otherwise, the energy flexibility may be overestimated and cause 
discomfort. 
 
On the other hand, although modelling accurate prediction algorithms of building 
thermal inertia is possible, it requires several types of reliable sensors that provide all 
the parameters involved and robust physical or AI-based models that requires long 
simulation or training time respectively. Therefore, research on hybrid modelling as 
proposed and developed in ebalance-plus (grey-box models) allows reducing training 
time and the need of deep monitoring. 
 
(2) Dynamic principle. As explained above, robust prediction models estimating 
actual flexibility is essential to establish fair market operations and energy 
management solutions to end customers, guaranteeing that more flexibility means 
more benefits. Considering that the accuracy of flexibility is enough to participate in 
balancing market operations as expected, the dynamic principle remains and from the 
moment that the flexibility is activated (i.e., the assets increase or reduce the expected 
energy consumption), predictions become outdated. This basic principle requires that 
flexibility mechanisms must estimate and manage the energy flexibility for all the 
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scenarios, (i.e., power, duration, and time), what makes management approaches 
unaffordable with usual prediction algorithms. 
 
The proposition 
 
These two reasons presented have been considered to create a reliable flexibility 
management ecosystem based on the principle that the energy flexibility must be a 
commodity, i.e., the measurement and verification procedure must be common for all 
the technologies and useful for all the stakeholders. The goal is to create a trust 
environment where energy retailers, aggregators, prosumers and network operators 
can exchange the flexibility in the same terms as the electric energy or power. 
 
Assuming that energy flexibility must be a commodity, the first step was to adopt the 
most usual timeframe at European level by the market, i.e., 15-minute energy 
monitoring. This time interval is considered as the minimum time that the customer or 
DER can provide flexibility to the system. Therefore, the customer offering flexibility 
can do it in multiples of 15 minutes, starting from the first time of the local day-ahead 
market. In case of France, the time interval considered is 30 minutes. The main benefit 
of this approach is that the aggregation of flexibility is the sum of individual flexibility of 
devices, customers, district, etc. 
 
Using the previous assumption, the number of scenarios is reduced significantly and 
can be calculated with a what-if analysis approach. The what-if analysis aim at 
calculating the maximum flexibility (power and duration) available for every 15 minutes 
in period of 15 minutes, over 24 or 48 hours depending on the time horizon needed. 
The main benefit is that the maximum number of optimization problems or forecasts is 
96 operations in 24 hours, totally suitable for most of IoT hardware in the market. 
 
Finally, it is proposed the data format in. json. For simplicity, the period is expressed 
as integer instead of local time. The data exchange format includes: user id, timestamp 
(calculation time), power/energy forecasting, positive flexibility (flex.up), negative 
flexibility (flex.down), cost (flex.cost) and the parameter “partial” means if the flexibility 
power can be partially (“on”) released or must be released totally in time (“off”). 
 
“user.id”: “number.id”, 

“timestamp”: "0000000000", 

{ 

“period”: k, 

“power.forecasting”: 100, 

“energy.forecasting”: 25, 

“flex.up”: { 

“power”: [Fk, Fk+1, Fk+2, …, FM], 

“flex.cost”: 0.10, 

“partial”: “on”, 

}, 

“flex.down”: { 

“power”: [Fk, Fk+1, Fk+2, …, FM], 

“flex.cost”: 0.20, 

“partial”: “off”, 

}, 
} 
} 
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Figure 3.2 Graphical representation of energy flexibility 

Finally, other proposition presented is the “flexibility cost”. Flexibility cost is the 
difference between the optimal scenario and the cost that the customer/DER offers for 
activating the flexibility in a specific time. In other words, the minimum price that must 
negotiate to keep at the minimum energy cost. The definition is presented as follows: 
 

• Number of periods: 𝑘 = 1, … , 𝑀. In case of quarter-hour energy profiles 𝑀 =

96 

• Energy cost (€) by period 𝑘: 𝑒𝑐𝑜𝑠𝑡[𝑘] 

• Optimal energy profile from period 𝑚: 𝐸𝑐[𝑘], 𝑘 ≥ 𝑚 

• Updated energy profile after flexibility request in period 𝑚: 𝐸𝑐
∗[𝑘 ≥ 𝑚] 

• Flexibility cost (€/kWh) in period 𝑚: 𝑓𝑙𝑒𝑥𝑐𝑜𝑠𝑡[𝑚] 

• Flexibility request (kWh) in period 𝑚: 𝑓𝑙𝑒𝑥𝑟𝑒𝑞𝑢𝑒𝑠𝑡[𝑚] 

𝑓𝑙𝑒𝑥𝑐𝑜𝑠𝑡[𝑚] =
∑ 𝑒𝑐𝑜𝑠𝑡[𝑘](𝐸𝑐

∗[𝑘] − 𝐸𝑐[𝑘])𝑘≥𝑚

𝑓𝑙𝑒𝑥𝑟𝑒𝑞𝑢𝑒𝑠𝑡[𝑚]
, 𝑚 = 1, … , 𝑀 

 

4 Flexibility scenarios in ebalance-plus 
 
The ebalance-plus project has defined three high-level use cases that must cover the 
most interesting flexibility services in the future focused especially on end customers 
(buildings, EV users, facility managers and DER managers). 
 

• Flexibility services I: DER flexibility management 

• Flexibility services II: VPP services for buildings 
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• Flexibility services III: Cost/CO2 optimization 

These scenarios are described in the following sections. 
 

4.1 Flexibility services I 

Flexibility services I (project use case number 8) describes the management of 
distribution energy resources in the context of flexibility management. A new figure 
named DER manager is the actor providing a district facility composed of electric 
vehicle charging points supplied by PV energy in combination with BESS and 
integrated in the grid with high-efficient power electronics. The DER manager provides 
charging services while participates in balancing (ancillary) services and local flexibility 
markets together with energy aggregators and the DSO. The whole solution can be 
considered a virtual power plan (VPP) model at district level. In this case, ebalance-
plus proposes a micro-DC network to take advantage of higher conversion and 
transmission efficiency, lower cost of energy converters and convenient controllability 
with less complexities (harmonics, synchronization, reactive power control, 
frequency…) than AC networks. 
 

 
Figure 4.1 ebalance-plus architecture controlling DER facility for flexibility management 

This scenario requires a two-level control: resource management in a DC micro-
network algorithm and the flexibility management.  
 

4.1.1 Resource management in a DC micro-network algorithm 
 
For the management of resources and in particular of energy from renewable sources 
in a DC network, different solutions can be used. First of all, it is necessary to consider 
what is the objective function, what are the resources to be managed and the electric 
setup of the microgrid. Two main management strategies are introduced: centralized 
and DC bus Signalling (DBS): 

• The first management mode, that is centralized, involves the implementation of 
an algorithm which, depending on the inputs and resources present, can use 
different objective functions, which can be the minimization of the the maximum 
power exchanged with the grid, minimization of energy exchanged with the grid, 
maximization of resources and other similar targets. 

• The second way of managing resources is DBS. It works based on the DC-bus 
voltage, i.e., the bus on which the energy resources are interfaced. Thanks to 
this management mode, a communication platform is not needed, but they can 
work according to a common goal by measuring the voltage of the DC-bus. 
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Both control algorithms are described as follows: 
 
Centralised algorithm 
 
The centralized model can be divided into two steps: the first that operates the day 
ahead and the second, that is a running an optimization, which operates almost in real-
time; a schematic view of the algorithm is reported in Figure 4.2. 
 
To run the first part of the algorithm, there are three different types of inputs: 
 

• A series of inputs that do not depend on users: day-ahead production and load 
forecasts, the state of charge of the different storage systems, any requests 
from grid operators, and other similar data. 

• Inputs that are dependent on users like habits, scheduling, any arrival, and 
departure times in case of electric vehicles, target temperatures of air 
conditioning systems, and other similar variables. 

• Others depending on rated specifications of energy resources connected like 
rated powers of the converters, storage systems capacity, any limits on the state 
of charge, the type of storage systems, as well as the type and number of 
present resources. 

These variables are the inputs of a day-ahead optimization model, whose objective 
function depends on the power exchanged with the grid, implementing any function 
related on it. Among the several inputs to the model there is also the possibility of 
considering the availability of flexibility, in order to be able to carry out some flexibility 
operations next day; this input is optional and depends on the objective function of the 
model. 
 

 
Figure 4.2 DC network centralized algorithm scheme 

At the end of this first step, the power profiles that should be exchanged with the grid 
and with the storage systems are obtained: these profiles are dependent one each 
other, so that only the exchange profile with the grid could be used to determine the 
others. These power profiles are used to run optimization algorithms and calculate the 
energy exchange with short-term forecasts after a flexibility request. 
 
DC Bus Signalling (DBS) algorithm 
 
The microgrid management algorithm through DC bus signalling (DBS) technology 
considers the microgrid power converters connected to the same DC-bus. They are 
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not commanded by any external algorithm, rather they modify their operating mode, 
therefore the power to be exchanged, by measuring the voltage on the DC-bus. 
 
In fact, according to the available resources, different thresholds which indicate the 
different operating modes are established. These thresholds depend on the renewable 
generation, the presence of storage systems, and the connection with the grid. Voltage 
levels in which different operations take place are then defined, when the storage 
systems supply or absorb power, when the injection or adsorption from the grid is 
enabled, when the renewable production plants can work at maximum power and when 
instead it is necessary to cut the same power.  
 
The different thresholds, as shown in Figure 4.3, are defined by two voltage levels. In 
each threshold various resources are suitably controlled, according to a predetermined 
objective, by modifying the setpoints of the converters. According to this objective, the 
control methods can also be modified between the different thresholds. For example, 
the control of a converter in the same threshold can be different if the main objective 
is to maximize the use of renewable resources or ensure the continuous supply of 
electricity. 
 

 
Figure 4.3 A threshold scheme of the DBS algorithm 

In case of several microgrids interfacing on the same DC-bus, managing similar 
resources, it is necessary to define “intervention coefficients” for the different 
microgrids, in order to correctly distribute the power flows. The same event can happen 
in the same microgrid, or in several microgrids interfaced with each other, if several 
storage systems are present or even different types of them. In this case their 
contribution will also be splitted according to appropriate coefficients. 
 
This operating mode is independent of any type of communication between the 
different converters, thus allowing it to operate even without external communications, 
autonomously for the objective set a priori. 
 
Interaction of the two strategies (under discussion) 
 
The two management strategies presented can be combined. In particular, considering 
the centralized algorithm previously described, whose output are power profiles that 
are sent to the different microgrids. In this case, the goal of these microgrids is to follow 
such profile but using the DBS at the basic operation of the microgrid for their devices. 
At the same time, the DBS represents a buffer strategy to use if there is no 
communication of the microgrids with other external components, thus managing to 
pursue the set goal. 
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In the ebalance-plus context, this use case is setup in the existing microgrid of the 
University of Calabria and demonstrated in the University of Málaga. To increase the 
robustness of the solution presented and facilitate the deployment and integration of 
solutions, the DC/DC power inverters involved (PV, BESS and V2G charging points) 
will operate under a DBS approach but punctually commanded by the ebalance-plus 
platform flexibility or resilience mechanisms. In this way, the voltage of the DC bus will 
operate under security conditions anytime and even flexibility requests can be refused 
if some over- or under- voltage conditions can happen. 
 

4.2 Flexibility services II: VPP services for buildings 

Flexibility services II aims at describing an innovative mechanism to transform 
buildings into virtual power plants (VPP) and aggregate multiple users (mainly 
buildings and facilities) and manage the available energy flexibility to support grid 
operation (DSO) or aggregator business (local flexibility markets). This mechanism is 
based on the flexibility definition proposed by ebalance-plus consortium as evolution 
of the previous FP7 project e-balance, which requires three steps to be implemented: 
 

1. Estimation of flexibility using forecasting models (BESS, HVAC, weather 
forecasting, PV generation, etc.): generation and update of scenarios every 15 
minutes.  

2. Optimization of energy assets according to market prices or environmental 
impact (CO2 reduction) when energy flexibility is not required. 

3. Flexibility activation under external steering signals due to grid congestion 
(DSO) or market opportunities (aggregator). 

The main point and difference regarding existing approaches is that, during the first 
step, the estimation of flexibility is declared to the market (e.g., aggregator) as well as 
the energy consumption is accounted for billing in case of energy suppliers, following 
the same organisational structure that could be integrated into smart meters in the 
future. The flexibility portfolio is update in turn every 15 minutes; thus, the whole system 
is aware of the total available flexibility with a better accuracy. These benefits are 
expected to be tested during the project demonstration phase in different 
configurations and locations (Spain, Italy, France). 
 
Flexibility estimation 
 
The flexibility estimation depends on the physical models or control strategy 
considered to manage the building assets. This section proposes two generic 
examples (BESS and HVAC) of how they should be defined and carried out for different 
assets. 
 
Battery flexibility: (P𝑓𝑙𝑒𝑥

down, 𝑡𝑑𝑜𝑤𝑛 , P𝑓𝑙𝑒𝑥
up

, 𝑡𝑢𝑝) 

 

P𝑓𝑙𝑒𝑥
down[k] = 𝑃𝐵𝐸𝑆𝑆

𝑑𝑜𝑤𝑛̅̅ ̅̅ ̅̅ ̅̅ − 𝑃𝐵𝐸𝑆𝑆
𝑑𝑜𝑤𝑛[𝑘] (1) 

𝑡𝑑𝑜𝑤𝑛 =
𝐸𝑐

𝐵𝐸𝑆𝑆[𝑘] − 𝐸𝑚𝑖𝑛
𝐵𝐸𝑆𝑆

𝑃𝑓𝑙𝑒𝑥
𝑑𝑜𝑤𝑛[𝑘]

 

 

(2) 

P𝑓𝑙𝑒𝑥
up [k] = 𝑃𝐵𝐸𝑆𝑆

𝑢𝑝̅̅ ̅̅ ̅̅ ̅ − 𝑃𝐵𝐸𝑆𝑆
𝑢𝑝

[𝑘] 

 
(3) 
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𝑡𝑢𝑝 =
𝐸𝑚𝑎𝑥

𝐵𝐸𝑆𝑆−𝐸𝑐
𝐵𝐸𝑆𝑆[𝑘]

𝑃𝑓𝑙𝑒𝑥
𝑢𝑝

[𝑘]
 (4) 

 
       

Where: 

• Ec
BESS[k]: Energy consumed by the BESS (negative values mean discharging in kWh) 

• 𝑃𝐵𝐸𝑆𝑆
𝑢𝑝

, 𝑃𝐵𝐸𝑆𝑆
𝑑𝑜𝑤𝑛: Max/min power charge/discharge values (input) 

• P𝑓𝑙𝑒𝑥
down, P𝑓𝑙𝑒𝑥

up
: Estimated power flexibility discharging/charging (kW) 

• 𝑡𝑑𝑜𝑤𝑛 , 𝑡𝑢𝑝: Estimated flexibility time discharging/charging (s) 

HVAC flexibility 
 
Remark: this estimation requires solving an optimization problem every time step and using thermal 
modelling represented by the beta function. 
 

Heating (𝑃𝑓𝑙𝑒𝑥
ℎ𝑒𝑎𝑡 , 𝑡ℎ𝑒𝑎𝑡) 

𝑀𝑎𝑥 𝑡ℎ𝑒𝑎𝑡 · Pheat  
𝑆𝑇 (1) 

𝛽ℎ𝑒𝑎𝑡(Pheat, theat) ≤ 𝑇𝑚𝑎𝑥 (2) 

𝑃𝐻𝑉𝐴𝐶
ℎ𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅ ≥ 𝑃ℎ𝑒𝑎𝑡 ≥ 𝑃𝐻𝑉𝐴𝐶

ℎ𝑒𝑎𝑡 [𝑘] (3) 

𝑡ℎ𝑒𝑎𝑡 ≥ τ (4) 

𝑃𝑓𝑙𝑒𝑥
ℎ𝑒𝑎𝑡 = 𝑃ℎ𝑒𝑎𝑡 − 𝑃𝐻𝑉𝐴𝐶

ℎ𝑒𝑎𝑡 [𝑘] (5) 

 

Cooling (𝑃𝑓𝑙𝑒𝑥
𝑐𝑜𝑜𝑙 , 𝑡𝑐𝑜𝑜𝑙) 

𝑀𝑎𝑥 tcool · 𝑃𝑐𝑜𝑜𝑙 

𝑆𝑇 (1) 

𝛽𝑐𝑜𝑜𝑙(𝑃𝑐𝑜𝑜𝑙 , tcool) ≥ 𝑇𝑚𝑖𝑛 (2) 

𝑃𝐻𝑉𝐴𝐶
𝑐𝑜𝑜𝑙̅̅ ̅̅ ̅̅ ̅ ≥ 𝑃𝑐𝑜𝑜𝑙 ≥ 𝑃𝐻𝑉𝐴𝐶

𝑐𝑜𝑜𝑙 [𝑘] (3) 

𝑡𝑐𝑜𝑜𝑙 ≥ τ (4) 

𝑃𝑓𝑙𝑒𝑥
𝑐𝑜𝑜𝑙 = 𝑃𝑐𝑜𝑜𝑙 − 𝑃𝐻𝑉𝐴𝐶

𝑐𝑜𝑜𝑙 [𝑘] (5) 

       
Where: 

• τ : Time step (15 minutes) 

• 𝛽𝐶𝑜𝑜𝑙(𝑃𝑐𝑜𝑜𝑙 , 𝜃), 𝛽ℎ𝑒𝑎𝑡(𝑃ℎ𝑒𝑎𝑡 , 𝜃) : Temperature evolution functions (º C) 

• 𝑃𝐻𝑉𝐴𝐶
𝐻𝑒𝑎𝑡 , 𝑃𝐻𝑉𝐴𝐶

𝐶𝑜𝑜𝑙 : Heating and cooling power (kW) 

• 𝑃𝑓𝑙𝑒𝑥
ℎ𝑒𝑎𝑡 , 𝑡ℎ𝑒𝑎𝑡: Power heating flexibility (kW) and time (s) 

• 𝑃𝑓𝑙𝑒𝑥
𝑐𝑜𝑜𝑙 , 𝑡𝑐𝑜𝑜𝑙: Power cooling flexibility (kW) and time (s) 

• 𝑃𝐻𝑉𝐴𝐶
ℎ𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅, 𝑃𝐻𝑉𝐴𝐶

𝑐𝑜𝑜𝑙̅̅ ̅̅ ̅̅ ̅: Maximum heating/cooling power (kW) 

• 𝑃𝐻𝑉𝐴𝐶
ℎ𝑒𝑎𝑡 [𝑘], 𝑃𝐻𝑉𝐴𝐶

𝑐𝑜𝑜𝑙 [𝑘]: Estimated/predicted heating/cooling power every 15 minutes (k) 

(kW) 

• 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥: Comfort thersholds temperatures (e.g., 21-26º C) 

 
Optimization of energy assets 
 
There are multiple ways to perform optimization problems, both classical approaches 
using commercial solvers like CPLEX (IBM®) or artificial intelligence algorithms like 
neural networks, greedy algorithms, genetic algorithms, among others. In the 
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ebalance-plus project these approaches are applied and compared in different 
contexts to evaluate the performance (i.e., time and accuracy).  This section proposes 
a general formulation of an optimization problem (cost and CO2 based) for a building 
with BESS and HVAC offering flexibility. 
 

𝑀𝑖𝑛 𝜔𝐶𝑂2
∑ 𝐶𝑂2[𝑘] · (𝐸𝑐𝑓[𝑘] − 𝐸𝑔

𝑃𝑉[𝑘])
𝑘≤𝐾

+ 𝜔𝑒𝑛𝑒𝑟 ∑ 𝑒𝑐𝑜𝑠𝑡[𝑘] · (𝐸𝑐𝑓[𝑘] − 𝐸𝑔
𝑃𝑉[𝑘])

𝑘≤𝐾
 

𝑆𝑇 
 
“Total energy consumption of building flexible loads (BESS, HVAC)” 

 

𝐸𝑐𝑓[𝑘] = 𝐸𝑐
𝐵𝐸𝑆𝑆[𝑘] + 𝐸𝑐

𝐻𝑉𝐴𝐶[𝑘], ∀𝑘 

𝐹𝐶𝑂2
= 1 − 𝐹𝑒𝑛𝑒𝑟 

𝐹𝐶𝑂2
, 𝐹𝑒𝑛𝑒𝑟 ∈ [0,1] 

𝐸𝑐
𝐻𝑉𝐴𝐶[𝑘], 𝐸𝑔

𝑃𝑉[𝑘] ≥ 0 

 
“BESS restrictions” 

𝐸𝑐
𝐵𝐸𝑆𝑆[𝑘] = 𝜏 · [𝜇𝐵𝐸𝑆𝑆[𝑘] · 𝑃𝐵𝐸𝑆𝑆

𝑢𝑝 [𝑘] − (1 − 𝜇𝐵𝐸𝑆𝑆[𝑘]) · 𝑃𝐵𝐸𝑆𝑆
𝑑𝑜𝑤𝑛[𝑘]] , ∀𝑘 

𝑆𝑜𝐶[𝑘] = 𝑆𝑜𝐶[𝑘 − 1] +
𝐸𝑐

𝐵𝐸𝑆𝑆[𝑘]

𝐸𝑚𝑎𝑥
𝐵𝐸𝑆𝑆

, ∀𝑘 

𝑃𝐵𝐸𝑆𝑆
𝑢𝑝 [𝑘] ≤ 𝑃𝐵𝐸𝑆𝑆

𝑢𝑝̅̅ ̅̅ ̅̅ ̅, ∀𝑘 

𝑃𝐵𝐸𝑆𝑆
𝑑𝑜𝑤𝑛[𝑘] ≤ 𝑃𝐵𝐸𝑆𝑆

𝑑𝑜𝑤𝑛̅̅ ̅̅ ̅̅ ̅̅ , ∀𝑘 

𝑆𝑜𝐶𝑚𝑖𝑛
𝐵𝐸𝑆𝑆 ≤ 𝑆𝑜𝐶[𝑘] ≤ 𝑆𝑜𝐶𝑚𝑎𝑥

𝐵𝐸𝑆𝑆 , ∀𝑘 
∑ |𝐸𝑐

𝐵𝐸𝑆𝑆[𝑘]|𝑘≤𝐾 ≤ 2 · 𝐸𝑚𝑎𝑥
𝐵𝐸𝑆𝑆, “Battery cycles limitation (2 per day by default)” 

𝜇𝐵𝐸𝑆𝑆[𝑘] ∈ {0, 1}, ∀𝑘 
 
“HVAC restrictions” 

𝐸𝑐
𝐻𝑉𝐴𝐶[𝑘] = 𝜏 · [𝜇𝐻𝑉𝐴𝐶[𝑘] · 𝑃𝐻𝑉𝐴𝐶

𝐶𝑜𝑜𝑙 [𝑘] + (1 − 𝜇𝐻𝑉𝐴𝐶[𝑘]) · 𝑃𝐻𝑉𝐴𝐶
𝐻𝑒𝑎𝑡 [𝑘]] , ∀𝑘 

𝑇[𝑘] = 𝑇[𝑘 − 1] + 𝜇𝐻𝑉𝐴𝐶[𝑘] · 𝛽𝐶𝑜𝑜𝑙(𝑃𝐻𝑉𝐴𝐶
𝐶𝑜𝑜𝑙 [𝑘], 𝜏) + (1 − 𝜇𝐻𝑉𝐴𝐶[𝑘] · 𝛽𝐻𝑒𝑎𝑡(𝑃𝐻𝑉𝐴𝐶

𝐻𝑒𝑎𝑡 [𝑘], 𝜏), 𝑘 > 1 

𝑇𝑚𝑖𝑛 ≤ 𝑇[𝑘] ≤ 𝑇𝑚𝑎𝑥 , 𝑘 ∈ [𝑘𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 , 𝑘𝑒𝑚𝑝𝑡𝑦] 

𝑃𝐻𝑉𝐴𝐶
𝐻𝑒𝑎𝑡 [𝑘] ≤ 𝑃𝐻𝑉𝐴𝐶

𝐻𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅, ∀𝑘 

𝑃𝐻𝑉𝐴𝐶
𝐶𝑜𝑜𝑙 [𝑘] ≤ 𝑃𝐻𝑉𝐴𝐶

𝐶𝑜𝑜𝑙̅̅ ̅̅ ̅̅ ̅, ∀𝑘 

𝛽𝐶𝑜𝑜𝑙(0, 𝜏) ≡ 𝛽𝑁𝐸(𝜏) 

𝛽𝐻𝑒𝑎𝑡(0, 𝜏) = 0 
𝑇[1] = 𝑇0 

𝜇𝐻𝑉𝐴𝐶[𝑘] ∈ {0, 1}, ∀𝑘 
 
Where: 

• ωCO2
, ωener: Multicriteria optimization factors (input) 

• Eg
PV: PV generation forecasting (input in kWh) 

• τ : Time step (15 minutes) 

• Ec
BESS[k]: Energy consumed by the BESS (negative values mean discharging in kWh) 

• SoC[k]: State of charge (%) 

• μBESS[𝑘], 𝜇𝐻𝑉𝐴𝐶[𝑘]: Binary variables (charge/discharge or heat/cool mode) 

• 𝑆𝑜𝐶𝑚𝑎𝑥
𝐵𝐸𝑆𝑆 , 𝑆𝑜𝐶𝑚𝑖𝑛

𝐵𝐸𝑆𝑆: Max/min SoC values (input) 
• 𝑃𝐵𝐸𝑆𝑆

𝑢𝑝
, 𝑃𝐵𝐸𝑆𝑆

𝑑𝑜𝑤𝑛: Max/min power charge/discharge values (input) 

• Ec
HVAC[k]: Energy consumed by the HVAC 

• 𝑇[𝑘]: Indoor temperature (º C) 

• 𝛽𝐶𝑜𝑜𝑙(𝑃𝑐𝑜𝑜𝑙 , 𝜃), 𝛽ℎ𝑒𝑎𝑡(𝑃ℎ𝑒𝑎𝑡 , 𝜃) : Temperature evolution equations (º C) 

•  𝛽𝑁𝐸(𝜏): Natural temperature evolution (without HVAC system) 

• 𝑃𝐻𝑉𝐴𝐶
𝐻𝑒𝑎𝑡 , 𝑃𝐻𝑉𝐴𝐶

𝐶𝑜𝑜𝑙 : Heating and cooling power (kW) 
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Flexibility management algorithm 
 
Figure 4.6 shows the flexibility management algorithm using BPMN 2.0. The algorithm 
is split into two scenarios: normal (without flexibility requests) and flexibility activation. 
Every 15 minutes the CMU or DERMU will collect data from sensors and forecasting 
services, perform the flexibility estimation and broadcast the flexibility profile to the 
upper level, in this case the LVGMU, which aggregates the whole flexibility profile 
downwards. The energy aggregator can access the flexibility profile of their customers 
and this flexibility is available at grid level to support grid congestion. In this way, both 
local flexibility markets for grid congestion and general market operations are 
addressed. The second part of the algorithm represent the activation of energy 
flexibility. The request can be done on demand from the energy aggregator or in case 
of some grid congestion at LVGMU or MVGMU level. As the energy flexibility profile 
has been declared previously, every unit receives the flexibility request and activate 
the amount of flexibility requested by its LVGMU. After that, the process continuous as 
the normal operation, estimating and updating the flexibility profile. 
 

 
Figure 4.4 Flexibility management in the ebalance-plus platform 

4.3 Flexibility services III: Cost/CO2 optimization 

As described in Deliverable 6.1 [69], the objective of use case number 10 (UC10) is to 
unlock the energy flexibility potential of different Danish summerhouses  with indoor 
swimming pools, and enable their participation in price-based demand-response 
programs, while maximising comfort and minimising CO2 emission and costs. In this 
respect, model predictive control (MPC) appears to be the natural framework for design 
a controller capable of: 
 

• Reducing energy bills and/or CO2; 

• Enabling automatic load-response to price signals (i.e. price-based demand 

response); 

• Increasing energy efficiency (by optimising energy performance). 
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As its name suggests, MPC relies on a model of the system to be controlled, which 
gives the capability to optimise the control action, while keeping the system dynamics 
and impact of future disturbances into account. This is achieved by solving at each 
control time step t an open-loop optimal control problem, whose aim is to minimise a 
given objective function J (e.g. total cost or CO2 emissions) over a finite prediction 
horizon τ. Once the OCP is solved, the controller implements the optimal control action 
over the control horizon only and the system moves to the next control time step where 
the whole process is repeated in a rolling-horizon fashion. In this way, an MPC has the 
capability to anticipate future events (e.g. energy prices, weather conditions, or grid 
requests) and adjust the control action accordingly (PID controllers do not have this 
predictive capability). This capability to adapt autonomously to a changing environment 
(e.g. stochastic disturbances) is crucial to unlock energy flexibility and minimise 
energy-related emissions. Moreover, this iterative optimisation process also allows the 
possibility to introduce feedback in the evaluation of the control action. MPC has been 
successfully applied to several applications in the energy and buildings field, such as 
indoor temperature control and optimal control of thermal/electric storages and 
renewables generation [70]. 
 
End users equipped with price/CO2 responsive controllers could benefit from cost and 
energy savings, and, at the same time, grid operators could exploit the unlocked 
flexibility to operate the grid more efficiently and to postpone capital-intensive grid 
upgrades. As a result, the whole society can benefit from renewable integrations, and 
hence from a cleaner and sustainable energy supply. 
 
Model development for control purposes 
 
Figure 4.5 shows a schematic of the heating system that supply hot water to the 
swimming pool together with the sensors and digital technologies (e.g., Control 
Management Unit / Gateway) with which the ebalance-plus platform interact with. A 
detailed description of the UC10 pilot site can be found in Deliverable 6.1. 
 

 
Figure 4.5 Schematic of the swimming pool heating system together with the ebalance-plus 

experimental set up. 

Readings from supply and return temperature sensors, together with weather data 
retrieved from the ebalance-plus platform are used to build the model of the plant used 
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by the MPC controller for prediction calculation. By denoting with 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡 the 
supply and return water temperature, respectively, with the latter assumed equal to the 
pool bulk temperature, a possible formulation of the differential equations governing 
the system dynamic could be:  
 

𝐶𝑖𝑛 �̇�𝑖𝑛 = �̇� ⋅ 𝑐 ⋅  (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) +  𝑃𝑒𝑙 ⋅ 𝜂𝑔𝑒𝑛 ⋅ 𝛿𝑉  (1a) 

𝐶𝑜𝑢𝑡 �̇�𝑜𝑢𝑡 = �̇� ⋅ 𝑐 ⋅  (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) + 𝑈𝐴 ⋅ (𝑇𝑒𝑛𝑣 − 𝑇𝑜𝑢𝑡)   (1b) 
 
Where 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 are the thermal capacities of the water content within the generator 
and the swimming pool, respectively;  �̇� is the mass-flow rate of the water circulated 

by the pump; 𝑈𝐴 is the thermal conductance of the swimming pool envelope; 𝑇𝑒𝑛𝑣 is 
the temperature of the environment surrounding the swimming pool envelope (e.g. 
ground temperature);  𝑃𝑒𝑙 and 𝜂𝑔𝑒𝑛 are the generator power input and efficiency, 

respectively. 𝛿𝑉 is a binary variable that is equal to one when heat is provided to the 

pool (valve open), and zero when no heat is provided (valve closed), while Δ𝑡 is the 
length of the control time step. 
 
Given the system of differential equations (Eq.1) it is then possible to derive the 
discrete-time state space model which will be used for control purpose, by using of a 
zero-order-hold sampling of the input signal: 
 

[
𝑇𝑖𝑛

𝑡+1

𝑇𝑜𝑢𝑡
𝑡+1] =  [

1 −
�̇�⋅𝑐⋅Δ𝑡

𝐶𝑖𝑛

�̇�⋅𝑐⋅Δ𝑡

𝐶𝑖𝑛

�̇�⋅𝑐⋅Δ𝑡

𝐶𝑜𝑢𝑡
1 −

�̇�⋅𝑐⋅Δ𝑡

𝐶𝑜𝑢𝑡
−

𝑈𝐴⋅Δ𝑡

𝐶𝑜𝑢𝑡

] ⋅  [
𝑇𝑖𝑛

𝑡

𝑇𝑜𝑢𝑡
𝑡 ] +  [

𝜂𝑔𝑒𝑛⋅𝑃𝑒𝑙
𝑡 ⋅Δ𝑡

𝐶𝑖𝑛

0
] ⋅ 𝛿𝑣

𝑡 + [
0

𝑈𝐴⋅Δ𝑡

𝐶𝑜𝑢𝑡

] ⋅ 𝑇𝑒𝑛𝑣
𝑡    (2) 

 
Eq. 2 can be stated in a more compact form by using vector notation: 

𝐓𝒕+𝟏 = 𝑨 ⋅ 𝑻𝒕 + 𝑩 ⋅ 𝒖𝒕 + 𝑫 ⋅ 𝒅𝒕   (3) 
𝒚𝑡 = 𝑪 ⋅ 𝑻𝑡  (4) 
 

Where 𝑨, 𝑩, 𝑪 and 𝑫 are the discrete state-space matrices; 𝑻 = [𝑇𝑖𝑛 𝑇𝑜𝑢𝑡]𝑻 is the 
state vector; 𝒚 is the measured output vector; 𝒖 is the vector of control variables (i.e., 

the valve position) and 𝒅 is the vector of disturbances (e.g. ground and indoor 
temperatures, heat gains, etc.). 
 
Optimal control problem formulation 
 
The control objective is to minimise the system operational cost over a prediction 
horizon 𝑁, while satisfying the occupancy comfort requirements.  
By denoting the electricity price as 𝑐𝑒𝑙 the objective function 𝐽 can be formulated as 
follows: 
 

𝑚𝑖𝑛 𝐽 = ∑ 𝑐𝑒𝑙
𝑡𝑁

𝑡=1 ⋅ 𝑃𝑒𝑙
𝑡 ⋅ 𝛿𝑉

𝑡 ⋅ Δ𝑡  (4) 

 
The range within which the pool temperature is allowed to vary gives comfort 
constraints: 
 

𝑇𝑜𝑢𝑡
𝑚𝑖𝑛 ≤ 𝑇𝑜𝑢𝑡

𝑡 ≤ 𝑇𝑜𝑢𝑡
𝑚𝑎𝑥                                   ∀ 𝑡 = 1, … , 𝑁  (5) 
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Similarly, Eq. 6 bounds the supply water temperature within the range defined by its 
minimum and maximum values: 
 

𝑇𝑖𝑛
𝑚𝑖𝑛 ≤ 𝑇𝑖𝑛

𝑡 ≤ 𝑇𝑖𝑛
𝑚𝑎𝑥                                   ∀ 𝑡 = 1, … , 𝑁  (6) 

 
Finally, given the state-state representation of the system dynamic (Eqs. 3-4), the 
optimal control problem to be solved at each control time step reads as follows: 
 

𝑚𝑖𝑛 𝐽 = ∑ 𝑐𝑒𝑙
𝑡𝑁

𝑡=1 ⋅ 𝑃𝑒𝑙
𝑡 ⋅ 𝛿𝑉

𝑡 ⋅ Δ𝑡  (7) 

s.t.   𝐓𝒕+𝟏 = 𝑨 ⋅ 𝑻𝒕 + 𝑩 ⋅ 𝒖𝒕 + 𝑫 ⋅ 𝒅𝒕          ∀ 𝑡 = 1, … , 𝑁                                                                (8)    

𝒚𝑡 = 𝑪 ⋅ 𝑻𝑡                                                      ∀ 𝑡 = 1, … , 𝑁  (9) 

𝑇𝑜𝑢𝑡
𝑚𝑖𝑛 ≤ 𝑇𝑜𝑢𝑡

𝑡 ≤ 𝑇𝑜𝑢𝑡
𝑚𝑎𝑥                                   ∀ 𝑡 = 1, … , 𝑁     (10) 

𝑇𝑖𝑛
𝑚𝑖𝑛 ≤ 𝑇𝑖𝑛

𝑡 ≤ 𝑇𝑖𝑛
𝑚𝑎𝑥                                     ∀ 𝑡 = 1, … , 𝑁  (11) 

𝛿𝑣
𝑡 ∈ {0,1}                                                       ∀ 𝑡 = 1, … , 𝑁  (12) 

 
It is worth underlining that exposing end users to time-varying prices reflective of the 
grid and generation costs allows for an increase in end users awareness of their impact 
on their consumption levels on the system costs. Moreover, it incentivises them to be 
flexible and shift their consumption from high to low tariff hours, thus relieving the stress 
on the grid (e.g., resolve grid congestion or reduce demand peaks). 
 
BPMN 2.0 diagram 
 
Figure 4.6 shows the process through which the economic MPC is implemented. At 
customer premise, the control management unit (CMU), which also works as a 
gateway, runs in stand-by mode and it is constantly waiting to get new information (i.e., 
price and weather forecasts) from the ebalance-plus platform.  Updated forecasts and 
electricity prices are retrieved from external data providers through rest APIs. Once the 
new information is available, the algorithm running on the CMU software solve the 
optimal control problem over the time horizon to which the price and weather forecast 
data refer. Finally, the new optimal control settings are sent back to the local controller 
of the heating system, which updated its status based on the new setting received. The 
whole procedure is then repeated in a rolling horizon fashion every time that new data 
are available at CMU level. 
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Figure 4.6: BPMN 2.0 diagram of the price-responsive predictive controller. 

5 Energy flexibility algorithms 
 
In this chapter, several approaches (hybrid grey-box, fuzzy logic, and deep learning) 
to estimate the energy flexibility in buildings considering demand, storage and 
generation sources are presented. These algorithms will be tested in the ebalance-
plus demo sites (Spain, Italy, and France), thus, the conclusions obtained may differ 
from the following descriptions at the end of the project. 
 

5.1 HVAC energy flexibility estimation: grey-box 

modelling 

One of the main sources of consumption and flexibility in buildings is the heating, 
cooling, ventilation, and air conditioning (HVAC). Buildings’ thermal inertia can be 
exploited as energy storage, while comfort conditions are maintained (21-26º C in 
general terms). However, the characterization of thermal inertial is complex and 
depends on static (construction elements) and dynamic (occupancy and user 
behaviour) parameters and conditions. This section described the physic problem and 
how it has been addressed in ebalance-plus project with a hybrid grey-box model 
approach. 
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5.1.1 Problem Description 
 
To estimate HVAC energy flexibility, we need to predict the thermal evolution of the 
building under different operation conditions of the HVAC system. This prediction can 
be obtained by using a grey-box model [71], which combines a white-box model with 
a black-box model. White-box models are based on theoretical knowledge about the 
problem to be solved and black-box models are built on statistical information from the 
experimental data. More specifically, the white box models a thermal network to solve 
the heat transfer problem while the black box estimates the parameters of the transfer 
equations through historical data (temperature, solar radiation, and HVAC system 
status). 
 

In the grey-box model, the heat flow can be modelled by an electric circuit analogy 
1R1C (see Figure 2.1) where heat flow is represented by current, temperatures are 
represented by voltages, heat sources are represented by constant current sources, 
absolute thermal resistances are represented by resistors and thermal capacitances 
by capacitors. The parameters that characterize each of these elements can be 
estimated using a Linear Regression Model with the historical data available, or any 
other artificial intelligence model. 

 

Figure 5.1 Equivalent thermal model (1R1C) used for the model 

 
In our case, the thermal circuit includes: 

• Tin: Indoor temperature of the building (ºC) 

• Tout: Outdoor temperature (ºC) 

• R: Thermal resistance of the building (m2ºC/W) 

• C: Thermal capacity of the building (W/m2ºC) 

• qrad: Solar radiation power on the building (W/m2) 

• q: HVAC system power consumption (positive value for heating and negative 

value for cooling) (W) 

5.1.2 Mathematical formulation 
 

To predict the indoor temperature of the building the following heat transfer equation 
based on the model described before is used: 
 

𝑑𝑇𝑖𝑛(𝑡)

𝑑𝑡
=

1

𝑅 · 𝐶
· (𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑖𝑛(𝑡)) +

1

𝐶
· (𝛼 · 𝑞𝑟𝑎𝑑(𝑡) +  𝛽 · 𝑞(𝑡)) 
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Where two additional parameters, α and β, have been added to the equation to 
consider the impact of the solar radiation and the HVAC system on the indoor 
temperature and t represents time (s). The resulting differential equation can be 
approximated by the next equation (where h is the sampling time of the data and k the 
step number): 

 

𝑇𝑖𝑛(𝑘) =
ℎ

𝑅·𝐶
· 𝑇𝑜𝑢𝑡(𝑘 − 1) + (1 −

ℎ

𝑅·𝐶
) · 𝑇𝑖𝑛(𝑘 − 1) +

ℎ

𝐶
· (𝛼 · 𝑞𝑟𝑎𝑑(𝑘 − 1) +  𝛽 · 𝑞(𝑘 − 1)). 

 
The previous equation can be simplified by defining simplified factors as follows: 
 

𝑇𝑖𝑛(𝑘) = 𝜔1 · 𝑇𝑜𝑢𝑡(𝑘) + 𝜔2 · 𝑇𝑖𝑛(𝑘 − 1) + 𝜔3 · (𝜔4 · 𝑞𝑟𝑎𝑑(𝑘 − 1) + 𝜔5 · 𝑞(𝑘 − 1)), 

 
where: 

𝜔1 =
ℎ

𝑅·𝐶
;  𝜔2 = 1 −

ℎ

𝑅·𝐶
= 1 − 𝜔1;  𝜔3 =

ℎ

𝐶
;  𝜔4 = 𝛼; 𝜔5 = 𝛽. 

 
These factors can be estimated applying linear regression to historical data. Then, the 
thermal parameters R and C, can be calculated as: 
 

𝐶 =
ℎ

𝜔3
;  𝑅 =

ℎ

𝐶 · 𝜔1
 . 

 
Finally, indoor temperature can be estimated using the outdoor temperature and solar 

radiation predictions, together with the HVAC system operation plan. 

 

5.1.3 Flexibility estimation and optimization 
 

Assuming that the indoor temperature of the building can be predicted using weather 
forecasts and HVAC system operation plan, the energy cost of the HVAC system 
required to keep the indoor temperature within comfort levels is suitable to be 
optimised or used for flexibility purposes. For example, the problem may be defined as 
a mixed integer programming (MIP) problem, using as binary variables the switching 
on and off the HVAC system in every time step (stateHeat and stateAir). The 
optimisation problem can be used to reserve energy flexibility by increasing the lower 
temperature limit or reducing the upper limit.  
  
The pseudocode of the MIP defined to optimise the HVAC system operation is shown 
below, including:  

• An array of energy cost per hour (c). 

• The range of comfort temperatures [Tmin, Tmax]. 

• Different arrays with the slopes per hour when the HVAC is cooling (slopeAir), 

heating (slopeHeat) and off (slopeOff). Temperature slopes are a simplification 

of the thermal model to transform the problem into lineal. 

min ∑(𝑐𝑖 · 𝑠𝑡𝑎𝑡𝑒𝐻𝑒𝑎𝑡𝑖

𝑛

𝑖=1

+ 𝑐𝑖 · 𝑠𝑡𝑎𝑡𝑒𝐴𝑖𝑟𝑖) 
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S.T. 𝑇0 = 𝑇𝑖𝑛𝑖𝑡 

∀ 𝑖 𝑖𝑛 1, . . . , 𝑛 ∶ 

𝑇𝑖+1 − 𝑇𝑖 = 𝑠𝑙𝑜𝑝𝑒𝐻𝑒𝑎𝑡𝑖 · 𝑠𝑡𝑎𝑡𝑒𝐻𝑒𝑎𝑡𝑖

+  𝑠𝑙𝑜𝑝𝑒𝐴𝑖𝑟𝑖 · 𝑠𝑡𝑎𝑡𝑒𝐴𝑖𝑟𝑖

+  𝑠𝑙𝑜𝑝𝑒𝑂𝑓𝑓𝑖 · (1 − 𝑠𝑡𝑎𝑡𝑒𝐻𝑒𝑎𝑡𝑖) 

𝑠𝑡𝑎𝑡𝑒𝐻𝑒𝑎𝑡𝑖 + 𝑠𝑡𝑎𝑡𝑒𝐴𝑖𝑟𝑖 ≤ 1 

𝑇𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ T𝑚𝑎𝑥 
 

and 𝑠𝑡𝑎𝑡𝑒𝐻𝑒𝑎𝑡 ∈ [0,1]𝑛 , 𝑠𝑡𝑎𝑡𝑒𝐴𝑖𝑟 ∈ [0,1]𝑛  

𝑎𝑛𝑑 𝑇 ∈ ℝ𝑛  
 

 
Finally, as recommendation to be considered, if at any time step the model prediction 
does not match the real data, the model should be automatically recalibrated, and the 
HVAC system operation plan is updated according to the new conditions. 
 

5.1.4 Performance tests and preliminary results 
 

To test the performance of the prediction model, an existing dataset containing several 
days of thermal data from a building in Trondheim, Norway [72] has been used. 
 

First, the 1R1C grey-box model is trained with the data from the dataset to fit the 
thermal parameters of the building. Then, one day's data is chosen to compare the real 
and estimated temperatures using the root mean square error (RMSE). Figure 5.2 
shows the comparison between the measured indoor temperature of the building and 
the indoor temperature estimated by the model. In this example, the RMSE between 
the prediction and the real temperature is 0.071086, which means that a 1R1C model 
can predict the indoor temperature successfully. 

 

Figure 5.2 Comparison between real and model prediction indoor temperature 

This prediction is used to obtain a cost-optimised operation plan for the HVAC system 
as shown in Figure 5.3.  
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Figure 5.3 Initial HVAC system operation plan 

Finally, a test including some temperature disturbances (such as window opening) was 
carried out. In that case, the model is recalibrated when it finds a mismatch between 
the estimated and the real indoor temperature, and the operation plan of the HVAC 
system is updated as shown in Figure 5.4. 
 
 

 

Figure 5.4 Updated HVAC system operation plan 

This example demonstrated that a simply 1R1C model with historical data can offer a 
good estimation of indoor temperature evolution, what it is very useful to estimate the 
available flexibility and optimise HVAC operation. Given these electric models can be 
combined, it can be easily adapted to different building configurations. 
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5.2 Building flexibility estimation: fuzzy logic 

As mentioned before, one of the complexities of flexibility forecasting is to calculate the 
remaining flexibility and the energy profile after a flexibility activation event, when the 
system (building facilities) must manage to fulfil with setpoints. This means that the 
energy that is not used due to some interruption, will be used later. The question is, 
how much the energy flexibility activation modifies the energy profile later on? In this 
section, a fuzzy logic approach is used to estimate the remaining energy flexibility after 
an activation event in a building with PV system and a battery energy storage system 
(BESS). 
 
Assuming that energy demand and renewable energy source (RES) generation 
forecasts are accurate enough, and the battery charging cycle is known, the daily 
flexibility estimate for a building can be obtained easily with the sum of RES generation, 
battery energy availability and building demand. Building demand is considered as a 
negative value, while RES generation and battery energy availability are considered 
as a positive value. Therefore, the energy flexibility estimation is represented with the 
following equation: 

F = RES + Battery + Demand 
 
The result of this equation may be negative, indicating that our consumption is greater 
than the energy availability given by RES generation and the battery. If so, the demand 
should be covered by the electric grid. However, the value ranges of these energy 
sources may differ from one building to other and to apply the fuzzy logic algorithm in 
any location, it is necessary to consider the maximum (rated) power of the target 
building to normalise data values. 

 
Figure 5.5 24-hour flexibility simulation. 

To check the estimation using a fuzzy logic algorithm, a 24-hour simulation was carried 
out. For this purpose, data of the building demand [73] the state of charge of a battery 
[74] and RES generation [75], were used. The data is taken in time steps of 15 minutes 
along the day. In case the data is available with a smaller time step, the algorithm 
resamples the data by interpolation, adjusting it to the predefined number of samples. 
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Figure 5.6 Battery cycle profile 

Figure 5.5 shows the 24-hour simulation obtained for generation and demand profiles. 
These profiles allow to estimate the energy flexibility for next 24 hours. Flexibility is 
represented in the form of bars, indicating the red colour a negative flexibility and the 
green colour a positive one. As expected, during the night hours, the building flexibility 
is negative, indicating that the demand is greater than the generation. And over the 
day, there are several periods where the building provides a positive value of flexibility. 
In this simulation, the battery is assumed to complete 3 full charging cycles (Figure 
5.6). The first cycle tries to cover the demand, while the second and third one 
represents the activation of flexibility in certain moment.  
 

5.2.1 Algorithm development guidelines 
 
Fuzzy logic control is a rule-based systems that generate outputs based on the 
magnitude and combination of inputs. For example, in case of some input is high then 
output is low. In this context the inputs used are 24-hour ahead prediction of RES 
generation, battery state of charge and expected demand. The outputs expected are 
the RES consumption, energy exchanged in the battery and the flexibility of the 
building. 
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Figure 5.7 Flexibility management system based on fuzzy logic 

The algorithm is designed to manage each building individually with some general 
rules. RES generation is prioritised to meet building’s demand and, if possible, to 
charge the electric battery to get enough flexibility. In case of RES generation is not 
enough to meet building’s demand, the electric grid will provide the remaining demand. 
Therefore, positive flexibility is given by RES generation and battery availability.  
 

 
Figure 5.8 Example of flexibility availability (green bars) using fuzzy logic algorithm 

Figure 5.8 shows the daily evolution of the flexibility, starting at 17:00. As the RES 
generation decreases, building’s flexibility decreases and only the flexibility given by 
the battery is available. And when RES generation becomes available again, building’s 
flexibility increases accordingly. 
 
In this way, a potential energy aggregator system may request a target level of flexibility 
and the fuzzy logic system will react to meet the battery state of charge needed over 
the day. To emulate this process, it is considered that the aggregator requests whether 
the change should happen immediately or in the future, and if the activation of flexibility 
is positive (increase consumption) or negative (reduce consumption). 
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Whenever a change is requested, the algorithm receives the input data, and it is 
executed for the indicated timestamp. As a result, the expected energy demand and 
the flexibility changes and the battery plan is restated considering that the energy 
demand (needs) of the building is fixed over the day, Therefore, the effect (ahead 
propagation) of the flexibility activation must distribute somehow the energy demand 
in next periods, prioritising those timeslots that, at first, presented higher energy 
flexibility. This rule can be implemented in different ways. For example, it can be 
considered a symmetric rule where the 20% of time slots that allow the greatest 
reduction/increase in consumption are prioritised. 
 
Figure 5.9 shows the effect of flexibility activation at 20:45 is propagated and 
distributed towards more flexible hours. This flexibility activation request can be applied 
only when the daily plan (for example considering day-ahead market approach) is 
issued.  
 

 
Figure 5.9 Effect of flexibility activation in next hours using fuzzy logic estimation 

Fuzzy logic is a straightforward mechanism that allows checking quickly the effect of 
flexibility activation for specific users, reducing the complexity of calculations for 
scenario generation. Energy aggregators can quickly estimate the effect of their 
decision for energy flexibility activation. The rule to set the propagation effect can be 
adapted according to the characteristics and conditions of each customer (single 
factor) but it requires an additional supervision algorithm to establish the target value, 
and can be considered a different value for positive and negative flexibility periods. In 
this example, the factor was established at 20% based on the historical data given the 
battery and RES system capacity. However, this factor must be adapted for different 
weather conditions (RES generation) and occupancy profiles (expected demand). 
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5.3 Building demand flexibility estimation: deep 

learning models 

Achieving flexibility is one of the main challenges in smart grids. With the emergence 
of distributed energy sources and electricity pricing in time slots, the need for more 
intelligent management has arisen. Many works in the literature consider the 
correlation of attributes and time series for pattern recognition and prediction, such as 
deep learning techniques, the most used in the last years. The high performance of 
deep networks in many fields has led to their adoption for predicting flexibility [76].  For 
instance, deep learning models can detect complex energy patterns over time, such 
as the Long Short-Term Memory (LSTM) models. 
 
Besides predicting flexibility, the realisation of an optimisation phase may be required 
to take the necessary actions to reach a set of targets (e.g., energy consumption). In 
this way, the optimization of the system can be addressed using a multi-agent 
approach [77]. This approach will allow not only to determine the necessary actions 
(e.g., discharging batteries, taking energy from cars) to reach the set objectives, but 
also to model the system on non-occurring situations to predict future behaviours. 
 
The agent-based optimization will produce an active policy according to the grid 
available actions, being able to assess the consequences of those. Once the system 
goals have been established, the system will obtain the action succession that 
maximizes the system efficiency and increase the flexibility, according to the desired 
objective.  
 

 
Figure 5.10 Agent-based platform Architecture 

The proposed approach considers a multi-layer system, comprising a flexibility and 
consumption prediction layer based on deep learning techniques, and an optimisation 
layer based on multi-agent systems to both continuously predict and optimise the state 
of the smart grid, as shown in Figure 5.10. These two approaches comprise a closed 
loop, where each approach feeds on the data provided by the other, improving their 
accuracy after each iteration and optimizing the system. 
 
These two approaches will be detailed as follows. 
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5.3.1 Demand flexibility forecasting using Deep Learning 
 
For the learning process of the flexibility algorithms, data retrieval and the creation of 
continuous datasets are necessary requirements. Hence, the first step in this layer is 
to monitor all available components. For this purpose, each available component in the 
smart grid (e.g., energy meters, batteries, solar panels, and charging points) will be 
monitored using the corresponding protocol (e.g., Modbus, TCP/IP), and all the 
information obtained will be stored into a database for continuous refinement and 
optimization and dispatched through data streams. Online learning will be considered 
for the continuous learning process of deep learning algorithms using data streams. 
 
For those to which access or the component is not available, a deep learning algorithm 
will emulate the component behaviour as closely as possible when data or related input 
features are available. Physical-based models will be also considered for modelling 
the behaviour of some grid components. Therefore, this approach would allow the 
platform the possibility to explore and predict other components without the physical 
component availability, just with their simulation in the form of a digital twin developed 
with deep learning techniques, evaluating their behaviour in response to certain inputs.  
This prediction layer, therefore, has two main objectives: i) on the one hand, to 
predict global aspects of the smart grid such as flexibility and consumption 
based on the continuous monitoring and characterisation of its components; ii) and on 
the other hand, to model grid components that are not available in a timely 
manner or for which no information is available through the co-relation of variables 
and historical data and the use of physical models, which will allow us to have a better 
knowledge of the entire system and be able to carry out more accurate simulations of 
its behaviour.  
 
Once data stream is available, continuous, and online learning of different deep 
learning models (e.g., LSTM, N-BEATS, DeepAR) with their respective optimizations 
and data pre-processing techniques will be explored. It is known that the grid data can 
fluctuate with a similar curve every year during the different seasons, therefore 
seasonality will be considered, and data will be collected throughout the year for 
optimal data handling. 
 
For the lifecycle management of deep learning models, our Kafka-ML platform [78] will 
be used. Kafka-ML is an open-source1 architecture that manages the pipeline of 
Artificial Intelligence (AI)/Machine learning (ML) models through data streams. Kafka-
ML presents a paradigm shift in ML/AI from static and traditional datasets used in ML/AI 
into dynamic and continuous data streams, offering an open, user-friendly, and ready-
to-use platform to the community that allows managing ML/AI pipeline steps such as 
the inference deployment in productions environments. Through this platform, 
continuous training and deployment of models will be enabled as information is 
received. Historical data will be used to continuously improve the deep learning 
models. 
 

5.3.2 Optimizing system policy using multi-agent-based system 
 

 
1 https://github.com/ertis-research/kafka-ml/  

https://github.com/ertis-research/kafka-ml/
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The multi-agent approach offers the possibility of solving optimization problems 
involving one or more agents that communicate with each other, and where their 
actions have repercussions on the others, thus requiring a strategy that optimizes their 
behaviour. They behave similarly to human interactions and allow solving optimisation 
problems in a satisfactory way in many cases. This approach has been demonstrated 
to be successful in addressing smart grid challenges [4], [5]. In this case, the multi-
agent approach will allow the system to optimise and identify the actions to be carried 
out in the smart grid to meet the flexibility objectives established, as well as simulating 
unseen system behaviour. 
 
One of the advantages of using multi-agent-based systems is that the problem can be 
detailed as much as desired, being possible to start from an approach where the 
building is worked as an agent to end up with decomposition in a set of agents of 
specific grids components, allowing the problem to be decomposed incrementally. This 
requires the definition of each agent, their actions, and results.  
When defining the agents and their corresponding behaviour, it is necessary to identify 
those that can perform actions and can participate in the platform. The following agents 
and actions have been identified for the time being but are not limited to: 

• Building: The building/centre will be the main component to model the flexibility 
and consumption of the smart grid. The actions that will be able to carry out are 
to increase/decrease the temperature of the rooms and turn off the air 
conditioning for reducing the energy consumption. 

• Storage batteries: The batteries will provide additional energy to the building 
and can reduce consumption in those time slots of higher demand or cost. Their 
actions will be to charge or discharge the battery. 

• Photovoltaic panels: Panels will provide energy consumption to the system. 
Depending on the needs of the system, its power can be controlled. 

• Charging points: Charging points allow electric vehicles to be both charged and 
discharged from the grid in times of need. Therefore, the actions to be carried 
out will be to charge or discharge the vehicles. 

To specify the behaviour of the agents, a policy needs to be defined. The objective of 
the policy is to obtain a valid actions sequence to carry out during the multi-agent 
execution. Policy optimisation allows agents to take better actions, thus improving the 
overall optimisation of the system. The application of deep learning has also been 
successfully demonstrated in this context [79], [80], especially deep reinforcement 
learning. Its main feature is that it does not require an accurate policy to obtain the best 
combination of actions, being able to start from a random policy and get optimal 
solutions. Moreover, this technique enables to explore many states faster than others, 
converging earlier to optimal solutions. 

6 Conclusions and next steps 
 
The current state of the art demonstrated that there are different strategies to estimate 
and manage customers energy flexibility but there is not a common approach to 
measure, estimate and manage this for future flexibility markets. 
 
The steering signal proposed in chapter 3 will be used and tested in demo sites (Spain, 
Italy, and France). This effort has been done due to the unclear and unofficial definition 
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of energy flexibility to be considered a commodity for future flexibility markets. The aim 
of this definition is to propose and create a trust environment where, customers, 
aggregators, and market regulators, can operate with transparency and low 
uncertainty, especially supported by forecasting algorithms. 
 
The algorithms and mechanisms described in this document are still a work in progress 
in the context of ebalance-plus project. Based on the preliminary results, it is identified 
in which demo sites can be tested but have not been validated with real data. 
Therefore, this document will be restated according to the results obtained after the 
demonstration phase. 
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