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Summary 

Summary of Deliverable 

The ebalance-plus aims to increase energy flexibility of distribution grids, predict 
available flexibility, increase distribution grid resilience and design and test new 
ancillary models to promote new markets based on energy flexibility. In particular, Task 
3.5 has the objective to develop and integrate multiple prediction models to exploit the 
available flexible resources at building and grid level. The structure of this document is 
the following: 

Section INTRODUCTION provides an overview of the deliverable and how it is related 
with the other work packages. 

Section PHOTOVOLTAIC PREDICTION MODULE describes the data required for the 
algorithm to work as well as the structure of the model. 

Section ELECTRICITY CONSUMPTION PREDICTION MODULE explains the data required by 
the model to generate accurate forecasts and describes the different parts of the 
module. 

Section REGULATION POWER PRICE PREDICTION MODULE describes the inputs and 
outputs, as well as the algorithm developed for the forecast. 

Section EV FLEXIBILITY PREDICTION MODULE summarizes how the electric vehicles can 
be used to generate energy flexibility. 

Section 6. ENERGY EXCHANGE PREDICTION MODULE summarizes the works towards the 
energy exchange prediction module initially resulting from the e-balance project. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Disclaimer 
This publication reflects the author’s view only and the European Commission is not 
responsible for any use that may be made of the information it contains.  
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Abbreviatures and acronyms 
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1 INTRODUCTION 
 

The increase of renewable energy sources (RES) in the electricity mix brings new 
challenges in the electric systems due to the volatility of wind and solar power plants. 
The changing energy consumption is now combined with the fluctuating energy 
generation produced by the technologies reliant on the weather. Therefore, power 
grids must be flexible enough to adapt to new circumstances and keep the system 
stable by matching power generation and consumption.  

The ebalance-plus is a project with the objective to increase energy flexibility of 
distribution grids, predict available flexibility, increase distribution grid resilience and 
design and test new ancillary models to promote new markets based on energy 
flexibility. To be more precise, the objectives of Task 3.5 are to develop and integrate 
prediction models at building level, grid level, electric vehicle (EV) prediction, storage 
prediction, distributed energy resources prediction and available flexibility. In this task, 
methods for forecasting future flexibility of various assets are developed, they can be 
controlled/managed like EV, storage, etc. Furthermore, forecasts for rooftop 
photovoltaics (PVs) as well as electricity consumption to be used for control of load of 
the demo cases. 
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2 PHOTOVOLTAIC PREDICTION MODULE 

The photovoltaic forecasting module is a self-learning and self-calibrating system 
based on a combination of physical and advanced machine learning models. This 
module is designed to predict the energy produced by the photovoltaic panels at the 
building level for the different demo sites from one to 48 hours ahead. 

The description of the PV prediction module is detailed in two different sections. 
Section 2.1 Inputs and outputs describes the necessary inputs required to generate 
accurate predictions and, also, the expected outcomes from the model. Section 2.2 
Description of the algorithm explains the basis of the model and how it works. 

2.1 Inputs and outputs of the PV-prediction module 

The PV forecasting algorithm considers multiple inputs that can be divided into two 
categories: demo-site data and weather data. 

The demo-site data includes the physical characteristics of each specific facility which 
defines, among others, the location of the photovoltaic panels, their rated power, and 
the layout of the PV panels (orientation and tilt). This information will establish the basis 
for the physical model, which estimates the solar resources for the area and the 
potential production according to the weather. 

It is necessary to train over the historical data, which includes the time series of power 
production and the availability of the plant (capacity available, schedules of 
maintenance, etc.) to learn from each specific installation and generate more accurate 
predictions. These power observations will have a resolution of 15 minutes (one 
observation recorded every quarter of an hour). 

On the other hand, the forecasting algorithm also requires information about the 
weather, which is provided by the Numerical Weather Predictions (NWPs) from 
different meteorological institutes such as the European Centre for Medium-Range 
Weather Forecasts (ECMWF), National Centres for Environmental Prediction (NCEP), 
etc. These NWPs are mathematical models based on the current state of the 
atmosphere that predict the weather conditions, including variables like temperature, 
wind speed and direction, irradiance, humidity, and precipitations. 

Finally, once the model is trained using the previous inputs, it will generate a power 
production forecast every hour adapted to each installation with a resolution of 15 
minutes and horizon of 48 hours ahead. 

The inputs and outputs of the PV-prediction module are summarized in Tables Table 
1 and Table 2. 
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Table 1. Inputs for the PV-prediction module. 

Inputs Description 

Location Latitude and longitude of the PV installation 

Capacity Panel and inverter capacity of the PV installation 

Layout design Orientation and tilt of the PV panels 

Power measurements 
Historical and real-time power measurements of 
the PV system with a resolution of 15 minutes 

Availability schedules 
Planning and maintenance schedules indicating the 
available capacity of the PV system 

NWP models 
Numeric Weather Predictions provided by multiple 
institutions 

 

Table 2. Outputs of the PV-prediction module. 

Outputs Description 

PV power prediction 
Forecast of the PV power production for the 
following 1 to 48 hours ahead 

 

2.2 Description of the PV-prediction module 

The photovoltaic prediction module consists of two main models. The first one is called 
the NWP-based prediction model, which uses the historical data together with the 
NWPs to generate predictions of the PV production for each demo case. This first 
module generates the forecasts covering the whole horizon: from one to 48 hours 
ahead.  

The NWP-based model combines the data provided by the demo cases and the NWPs, 
generating as many models as weather forecast providers are included in the setup. 
This can be seen in Figure 2.1. 
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Figure 2.1. NWP-based prediction model. 

The NWPs are usually predictions that follow different methodologies and contain 
different information. Therefore, as demonstrated in multiple studies, a good way to 
improve the forecast accuracy is to include a combination module [1], [2], [3]. This 
module analyses the accuracy of each individual model and the correlations among 
them, assigning weights to generate a combined forecast with lower error. An example 
of this can be seen in Figure 2.2. 

 

 
Figure 2.2. Error reduction in the combination module. 

Figure 3 represents the normalized mean absolute error (nMAE, %) of the predictions 
as a function of the time horizon (hours). It is possible to see two different NWP sources 
represented in green and pink lines that have similar performance for the first 1 to 3 
hours and, after that, they start diverging reaching an error of 15% for an operational 
horizon of 35 hours. It is possible to generate an optimized prediction with a lower error 
by introducing a combination module for these two NWP models, which is represented 
by the blue line. 

Apart from the improvements in accuracy, the combination module also improves the 
robustness of the overall system as combined forecasts will always be produced if 
there is at least one input source.  

Finally, the second prediction module is the data-based model. This module is mainly 
based on the latest recorded measurements and not on the weather predictions. The 
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real-time data (PV production) is introduced in a time-series algorithm [4], which 
generates the short-term predictions (1 to 12 hours ahead). 

In order to merge the predictions of the two previous modules (NWP-based and real-
time data-based), a substitution module is introduced. This module selects the power 
production forecast of the real-time data-based model (1-12 hours ahead) and 
appends the NWP-based predicted values for the rest of the horizon (12 to 48 hours 
ahead). This generates an optimized time series that covers the 1-48 hours horizon. 
This can be seen in Figure 2.3. Photovoltaic prediction module.  

 

3 ELECTRICITY CONSUMPTION PREDICTION 

MODULE 

The electricity consumption prediction module is based on machine learning for 
automatic calibration of models using historical data and real-time measurements. The 
load forecast algorithm will be used for “Building Demand Forecasting”, “Vehicle 
Charging Point Forecasting”, and “Electricity Grid Forecasting” since it can be 
considered that the three of them follow the same principles. 

There are two different sections explaining how the electricity consumption module 
works. Section 3.1 Inputs and outputs, describes the necessary data required to 
generate accurate predictions and, also, the expected variables generated by the 
model. Finally, Section 3.2 Description of the algorithm explains the basis of the model 
and how it works. 

 

3.1 Inputs and outputs electricity consumption 

module 

The electricity consumption prediction module requires, as the PV algorithm, two 
different inputs: specific study case data and NWP data. 

The study-case data includes, on the one hand, the physical location of the studied 
building and, also, the expected annual energy consumption (energy/year). The 
location is necessary to get accurate weather predictions, while the expected annual 
consumption will provide an estimation of the base consumption of the studied building. 

Figure 2.3. Photovoltaic prediction module 



This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement N°864283 

D3.5 Description of prediction models and algorithm specification 
08/03/2022 

 

11 

On the other hand, the demo sites should provide historical and real-time data. In this 
case, it includes power consumption measurements and, also, the holidays/school 
calendar for the following years. The former gives insights into the consumption 
patterns, while the latter helps identify and generate better predictions for non-regular 
days. 

Finally, the NWP data is extracted for the given location providing information about 
the temperature, solar irradiance, precipitation, and humidity, which help to understand 
and predict the consumption patterns of the customers. 

The inputs are summarized in Table 3. 

Table 3. Inputs for the electricity consumption prediction module. 

Inputs Description 

Location Latitude and longitude of the building 

Expected annual 
energy consumption 

Expected energy consumption over a common year 
(energy/year) 

Electricity power 
consumption 

Measurements of electricity consumption 

Power measurements 
Historical and real-time power consumption of the 
building with a resolution of 15 minutes 

Holidays Schedule National and school holidays of a natural year 

NWP models 
Numeric Weather Predictions provided by multiple 
institutions 

Regarding the outputs, the prediction model will generate a new power consumption 
forecast every hour, with a resolution of 15 minutes for the next 1 to 48 hours ahead. 
This can be summarized in Table 4. 

Table 4. Output of the electricity consumption module. 

Outputs Description 

Electricity consumption 
prediction 

Forecast of the electricity consumption of the 
system for the following 1 to 48 hours ahead 

 



This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement N°864283 

D3.5 Description of prediction models and algorithm specification 
08/03/2022 

 

12 

3.2 Description of the consumption prediction 

module 

The electricity consumption module has been designed following the same approach 
as the PV module. 

On the one hand, there is the NWP-based prediction model that combines the historical 
data with the NWP sources. Based on the input data, the module automatically 
identifies and takes the systematic behaviour of electricity consumers into account. 
This means that it continuously adapts to the actual situation by monitoring the 
consumption and adapts to changes, such as changes in consumer behaviour, number 
of consumers, meteorological models, or even changes in the physical characteristics 
of the power grid [5], [6]. 

On the other hand, the real-time data-based prediction module uses online 
measurements, creating a time-series model to improve the accuracy for the short 
horizon (1-12 hours ahead), adapting to sudden changes in the consumers’ behaviour 
and energy flexibility scenarios [7]. Electricity load forecasting is complicated because 
the dynamics of buildings in some geographic regions affect the cooling or heating 
demand on an hourly basis. For this reason, a non-linear weather response has been 
developed to estimate the heating and cooling breaking points as well as the slopes of 
the heating and cooling demands (highly depending on country and regions). 
Therefore, the electricity consumption module automatically applies an optimal 
smoothing effect which solves this issue, such that the physical properties of the 
underlying energy system are modelled correctly, and the forecast shows the 
appropriate response to changes in temperature or sun irradiation. 

As in the PV forecasting module, the electricity consumption algorithm will generate as 
many models as NWP sources defined, which are combined to generate the most 
accurate predictions. Finally, the substitution model will append the predictions of both 
modules, using the 1 to 12 hours from the real-time data-based model, and the 
remaining – 12 to 48 hours – from the NWP-based algorithm. 

A diagram summarizing the different modules of the electricity consumption prediction 
model can be seen in Figure 3.4. Electricity consumption prediction module. 
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Figure 3.4. Electricity consumption prediction module. 

4 REGULATION POWER PRICE PREDICTION 

MODULE 

Like the previous prediction modules, the regulation power price prediction module is 
also a self-learning and self-calibrating system. It relies on real-time power system data 
available through power exchanges. The module predicts a large set of quantiles for 
each price area, enabling the assessment of worst-case, best-case and anything in 
between. 

The two sections explaining how the Regulating power price prediction module works 
are the following. Inputs and outputs describe the necessary inputs required to 
generate accurate predictions and, also, the expected outputs from the model. 
Description of the regulation power price prediction module explains the basis of the 
model and how it works. 

4.1 Inputs and outputs 

The expected output from the prediction module is quantiles of regulating power prices, 
which defines the distribution of the regulating power prices. 

There are five kinds of inputs to the model, two of which are publicly available from 
power exchanges, and three of which are forecasted produced internally by ENFOR. 
From power exchanges, the inputs are the spot prices for the price areas, which form 
the baseline for regulating power price since, on average, spot prices and regulating 
power prices are equal. Next is the scheduled flow and capacity on interconnectors 
between the price area in question and surrounding price areas. The difference 
between these two variables results in the effective capacity, which can be used to 
cancel out differences between neighbouring price areas, thus reducing overall 
imbalances. Finally, the three inputs generated by ENFOR are wind and solar 
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production and electricity demand. All of these are subject to large uncertainty, which 
is what causes imbalances. 

4.2 Description of the regulation power price 

prediction module 

The prediction module uses operational data from the power grid to assess the 
probability of up and down-regulation and no regulation. For each of these scenarios, 
it generates forecasts of the regulation power price (notice that in the case of no 
regulation, the regulation power price equals the spot price). Fundamentally, what 
makes the prediction module function is that regulating power prices are, to a large 
extent, determined by the ability to exchange energy with neighbouring price areas: 
some areas tend to offer cheap methods for dealing with imbalances through, for 
example, pumped hydropower. Thus, whether spare capacity is available for 
exchanging energy with these areas is essential for regulating power prices. The 
module can decide which of the connections are important automatically. 

The module consists of a two-stage random forest. The first stage estimates the 
probability (weights) of having no regulation, up-regulation, and down-regulation (wno, 
wup, and wdown). Then, the second stage is conditioned upon the kind of regulation. 
That is, it assumes either no regulation, up-regulation, or down-regulation. Forecasts 
are produced for each of the three stages, and, ultimately, the weights are assigned 
according to the occurrence probability of the corresponding scenarios as illustrated in 
Figure 4.5. Regulation power price module.. 

 

Figure 4.5. Regulation power price module. 

5 EV FLEXIBILITY PREDICTION MODULE 

EV flexibility without vehicle-to-grid is a combination of three quantities: 

1. Allowed charge rate - higher is better 
2. Charging deadline - later is better 
3. Energy needed 
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A larger charging rate and a later charging deadline (the time when the car must be 
ready for take-off) is better from the user point of view. However, it is not so clear for 
the power needs.  

In one extreme, if the vehicle does not need energy at all, then it has zero flexibility 
since it will not accept any charging (this is different when vehicle-to-grid is allowed). 
The other extreme is that the EV needs so much energy that it must charge at the 
maximum rate until the charging deadline. In this case, the charging process can never 
be turned down, and thus, there is also zero flexibility. 

Therefore, the optimal amount of needed energy depends on the charging deadline 
and allowed charging rate. The later the deadline and the higher the charging rate, the 
more needed energy can be accommodated while still allowing room for flexibility. 
Assuming that charging rate does not affect efficiency and that up and down-regulation 
are equally important and likely to happen, the optimal energy amount is exactly such 
that the car needs to be charged for half of the time at full capacity. In this case, the 
flexibility of a particular EV is given by the following equation: 

𝐹𝑙𝑒𝑥 = 𝐸(𝐶𝑟𝐶𝑡 − 𝐸), 

where 𝐸 is the required energy by the EV, 𝐶𝑟 is the allowed charging rate, and 𝐶𝑡 is the 
time until the charging deadline. Thus, the unit of 𝐹𝑙𝑒𝑥 is energy squared. This unit 
makes sense, since the source of energy flexibility originates from two sources; 1) the 
demanded energy, 𝐸, which can potentially be moved around and 2) spare capacity, 
𝐶𝑟𝐶𝑡 − 𝐸, which has the potential to be used to move energy around. Having one 
without the other leaves zero room for flexibility. Conversely, having a lot of either 
energy demand or spare capacity means that more energy flexibility is gained from 
increasing the opposite quantity. 

For each time step, the EV flexibility index can be computed, yielding a time series. 
This time series can then be used for training forecasting models that will yield 
forecasts of future EV flexibility. However, it is not possible to know what models are 
best suited for this until data is available. 

 

5.1 Flexibility concept for electromobility 

Electric vehicle (EV) user are the primary customers of the EV charge management 
services delivered by the EV charge management company described in this 
document. The primary goal of the EV charge management service should be to: 
 
A) Lower the costs of charging an EV by reducing electricity costs 
B) Provide the EV customer with the feeling that he is contributing to society by 
charging his car when the electricity system needs it due to "excess" amount of 
renewables or when the renewable generation rate in the energy mix is higher 
(greener) 
 
The EV customer will however most likely (also) be a customer at an EV-operator 
(installer and operator of charging infrastructure) and thereby not be a direct customer 
at the electric vehicle charging management company. The charging services will 
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therefore have to be delivered in cooperation with an EV service operator - which 
potentially could also be viewed as the customer - depending on the specific business 
setup. 
 
At the other end of the value chain an electricity trader (consumption balance 
responsible party) will provide the access to the whole sale electricity markets. The 
balance responsible party will either be an important partner or could in certain 
setups/markets also be considered a customer (if they for example sell fix price 
contract to the EV operator and thereby have a vested interest in reducing actual 
electricity purchasing costs). 
 
Most likely the value chain will look like something described in Figure 5.6, where 
customers at EV-operator can have different electricity suppliers (balance responsible 
parties) and the EV charge management company might end up aggregating load 
profiles across multiple EV-operators and multiple electricity suppliers. Taking on the 
role as aggregating load across multiple EV-operators and electricity suppliers should 
be seen as an advantage. The reason is that the additional value is then added along 
the value chain as opposed to a linear value chain where both the EV-operator and the 
electricity supplier can more easily squeeze the EV-charge management company.  
 
Charge points (CP) can be located either a private customer location or at a public 
accessible locations. The charge management system will link all the players together. 
 

 
Figure 5.6: The charge management system will connect EV Operators and Electricity suppliers, so 
private and public charge points can be managed 

 
Flexibility in regard to e-mobility can be considered as an expression of electric 
vehicles charging speed. When an electric vehicle connects to a charge point it will 
express both an “option” to charge (as part of the battery will empty) and “obligation” 
to charge, as the user will need to leave and drive somewhere (requiring a certain 
amount of energy to be available). In case of vehicle to grid, the connection of a car 
will also represent an “option” to discharge. 
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The charge decision can hence be described by the two extremes: charging as fast as 
possible vs charging as late as possible. Both of these strategies being defined by how 
much energy is on the battery when connected, the size of the battery, how much 
energy has to be on the battery when it leaves, and the maximum charge rate of the 
car (given the infrastructure it is connected to). Any charge patterns in between those 
two extremes can also be decided as long as the charge rate is not violated. 
 
Such charge sessions can then be aggregated, and a total flexibility expression can 
be derived, illustrating how the total flexibility of a charge portfolio can be described. 
 
Collection such a time series of aggregated charge sessions, can then be used for 
forecasting the flexibility, which again can then be used to plan and schedule the 
charging of the vehicles, such that the energy is distributed between vehicles. 
 
Value is generated by creating a system which can predict/forecast EV customer 
behaviour and expose this in a structured way to electricity traders so the electricity 
can continuously be bought the cheapest possible way and thereby generating savings 
for the EV customer. The charge management systems could be viewed as a 
combination of the ability to predict and plan as well as to execute and operate 
according to the plan. 
 
Conceptually the charge management system operates at two different “levels” in 
order to create value. In one end of the value chain is the electricity markets. Prediction, 
planning and execution should focus on the aggregated level of the portfolio of 
customers in order to make it possible to interact with the electricity market. The actual 
service to the customer is delivered in the other end of the value chain. This has to 
happen on a customer-by-customer basis. Therefore, the charge management system 
should provide functionality on both the aggregated level as well as on the individual 
customer level – and be able to integrate these to levels into one system. 
  
Value can be created in several value pools along the value chain in the utility sector. 
Some of them are easier accessible than other and some contain more value than 
others. The description below will outline how value can be created, how it can be 
accessed and which barriers might exist. Barriers can be technical, regulatory or more 
structural in terms of who controls the value in the value chain. In the following both 
potential and barriers will be identified for the different value pools which should 
prioritize the effort and develop the initial minimum viable product (MVP) and the 
following road map. 
 
Prediction of customer behaviour should take place in such a way that it: 

• Utilize as much information about the customers as possible 

• Bothers and interferes with the customers as little as possible 

• Follows the logic and processes of the electricity markets 

• The results are presented in a structured way which fits the structure of the 
electricity market and thereby can be optimized by traders. 

Fundamentally electricity costs in regard to EVs are made up of CAPEX components 
and OPEX components at the consumer level. Furthermore, there is a future potential 
for revenues from delivering system services. 
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CAPEX:  
- Cost of installation 
- Cost of access to the grid at installation time. Often referred to as a “connection 

fee”. 

OPEX: 
- Cost of metering and access to the grid (re-occurring yearly fee) 
- Cost of producing electricity (cost for actually producing one unit of electricity at 

the power plant) 
- Cost of transporting electricity (cost of transporting the electricity from power 

plant to consumer) 
- Taxes (taxes and VAT on electricity) 

Revenues: 
- Revenues from system services 

Additional future revenues could come from battery maintenance service (charging 
batteries in accordance with the OEM’s specification to preserve lifetime) as well as 
second life battery storage applications. 
 
Charge management should follow the electricity trading process, starting with the 
rough planning in the day-ahead market, moving into re-iterations of the planning and 
optimization process, as the intra-day market opens and charge sessions are 
executed, as seen in Figure 5.7. 
 

 
Figure 5.7: Charge management should follow the electricity trading process, starting with the rough 
planning in the day-ahead market, moving into re-iterations of the planning and optimization process, 
as the intra-day market opens and charge sessions are executed 
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6 ENERGY EXCHANGE PREDICTION MODULE 
Another approach towards energy flexibility prediction is to involve solutions based on 
neural network to predict or estimate the exchange of energy at a given node of the 
energy grid. A module realizing this functionality was initially developed in the e-
balance project [8] and will be further evaluated and optimized within the ebalance-
plus system. This approach mainly considers the energy system to be a black box, with 
only a few additional parameters being inputs to the module. In its initial version the 
module tries to exploit the regularity of the energetic behaviour, but we aim at 
enhancing the approach with additional information to capture irregular events as well.  

6.1 Problem definition 

One particular instance of the energy exchange prediction module operates on a given 
node of the energy grid, modelling the energy exchange at that particular node, 
referring to a household, neighbourhood or other kind of energy grid branch. In the 
following description, we refer to that part of the grid as to the neighbourhood.  
Let EC > 0 denote the sum of energy consumed by the neighbourhood, let EG > 0 
denote the sum of energy generated by the neighbourhood, let EL > 0 denote the sum 
of energy lost within the neighbourhood, let EW > 0 denote the sum of energy 
withdrawn from the grid to the neighbourhood, and finally, let EF > 0 denote the sum 
of energy fed to the grid from the neighbourhood. 
A variable EN representing the net energy exchange of the neighbourhood can be 
defined as follows: 

EN = EC – EG + EL = EW – EF 
 
The energy exchange predictor operates on energy values representing defined time 
intervals – in the initial implementation this time interval was set to 15 minutes. The 
historical values define the time-series being fed to the module to train it, and the 
module is able to generate an array of values representing the predictions for the 
following 24 hours.  
 
Availability of the predicted EN values can help energy flexibility and resilience 
algorithms to operate and define their set points in the future.  
 

6.2 The internal structure of the module 

The module is implemented as a neural network – multilayer perceptron with a number 
of inputs and a single output (see Figure 6.8).  
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Figure 6.8. The internal structure of the energy exchange prediction module 

All the data considered in the module is represented as time-series and the particular 
values provided to the inputs are a combination of historical values as well as 
parameters describing the point in the future (24 hours ahead), for which the energy 
exchange value is to be predicted. The values in the parentheses indicate the temporal 
relation between these values. 
  

7 CONCLUSION 
Renewable energy and electricity demand forecasting provide valuable information 
about the expected changes in the energy that must be generated in the near future to 
meet the population needs. The development of the photovoltaic and electricity 
consumption prediction modules will help to develop new methods for matching the 
demand with supply in the most efficient, economic, and sustainable way. 
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