
27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 11214

CIRED 2023 1/5

A SECURE AUTOMATION SOLUTION TO PROVIDE FLEXIBILITY AT LOW-LEVEL
GRID – MIDDLEWARE SERVICES

Razgar Ebrahimy Mohsen Banaei Henrik Madsen

Denmarks Tekniske Denmarks Tekniske Denmarks Tekniske

 Universitet – Denmark Universitet - Denmark Universitet - Denmark

raze@dtu.dk moban@dtu.dk hmad@dtu.dk

 Jaime Chen Gallardo Manuel Diaz Rodríguez Juan Jacobo Peralta Escalante

Softcrits – Spain Softcrits – Spain Centro de Estudios de Materiales y

jaime@softcrits.es mdr@softcrits.es Control de Obra, S.A – Spain

jacobo.peralta@cemosa.es

 Krzysztof Piotrowski

 Innovations for High Performance

 Microelectronics– Germany

 piotrowski@ihp-microelectronics.com

ABSTRACT
The digitalisation of the grid at the DSO and consumer
levels has created new challenges for the operators and
stakeholders involved that require significant
coordination and cooperation. More importantly, it
requires secure, scalable and interoperable software
automation solutions. These solutions should be
comprehensive; in essence, that information and data can
be used and traced from the low and medium-level
transformers to the end user's smart meters and energy
management systems. As part of the balance-plus (H2020)
project, an interoperable and secure middleware
framework has been developed and tested in three demo
sites in Italy, France and Denmark. The framework
provides greater observability, monitoring and control
power to the stakeholders, such as DSOs and aggregators,
to utilise the available flexibility from the end-users. The
low-level grid is equipped with IoT devices and control
systems from vendors and manufactures that are not
always interoperable.

INTRODUCTION
Smart energy systems are highly interdependent both in
terms of the technologies and the operations [1]. The
digitalisation of the grid at the DSO and consumer levels
has created new challenges for the operators and
stakeholders involved that require significant coordination
and cooperation [2]. Therefore, these issues were
addressed in the ebalance-plus [3] project by developing a
middleware framework with scalability and security
principles at its heart. The framework's purpose is to
facilitate digital interaction among many stakeholders with
complete control over what data to share with others. In
the meantime, to improve the resilience of the low-level
grid and include the end users in the solution. The
proposed framework has been implemented to be deployed
on energy management devices in the end-users and on
smart gateways at the transformer level. The underlying

concept of the middleware is to ensure security and
scalability where many stakeholders are involved in
providing a service [4]. The ebalance-plus project focuses
on unlocking flexibility from the low-level grid in a secure
and scalable manner. So far, the framework has provided
promising results in three demo sites where it has been
deployed to serve as a mediator to offer flexibility and
enable various stakeholders systems to communicate
securely.
The current implementation is developed in JAVA and
Python programming languages and is envisioned to
enable the end user's energy management systems to
securely participate in providing ancillary services to the
grid. The framework also offers modularity and separation
by design, where different applications and services can be
coupled to provide a common service, such as flexibility
or frequency control. The middleware also provides a
secure interface between the host applications that can
share data in secure and encrypted ways. Ebalance-plus
project aims to resale the architecture design to help the
community and DSOs to adapt the solution and use it.

EBALANCE-PLUS ARCITECURE
The ebalance-plus system is composed of units, called

management units or MUs, that implement algorithms to

forecast and manage the available flexibility to incentivise

demand response programmes and increase the

distribution grid capacity to avoid congestions and advise

optimization strategies. Some of the concepts and design

in the system architecture follows the Smart-Energy

operating system [5] which is tried and tested in another

EU projects. In the proposed architecture each MU is

considered an autonomous system, such as an embedded

PC, although other options are possible, such as

virtualizing the MUs in containers or VMs. The units are

organized following a tree hierarchy where each MU has a

parent MU and possibly multiple children MUs except for

the top-level grid management unit (TLGMU) which is the

MU located at the root of the tree. Figure 1 illustrates the

relationship between the different MUs (depicted as

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 26,2023 at 09:52:28 UTC from IEEE Xplore. Restrictions apply.

27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 11214

CIRED 2023 2/5

rectangular dark blue boxes) in a scenario that has four

main levels (enumerated from the top of the tree to

bottom):

TLGMU: top level grid management unit

located, for example, in the cloud.

MVGMU: medium voltage grid management

unit located in the primary substation (PS).

LVGMU: low voltage grid management unit

located in the secondary substation (SS).
CMU: customer management unit located in the

customer premises, buildings, etc.

DMU: device management unit located inside

external devices that communicate with the

system.

Figure 1 ebalance-plus architecture

In addition, distributed energy resource management units

(DERMUs) can be deployed at any level to management

DER devices located at different levels of the energy grid.

Each unit must be able to exchange information with

external devices and with each other to distribute the

information generated in the system and transport it to the

data consumers which are most often the ebalance-plus

algorithms although it can also be GUI applications,

SCADA/monitoring applications, etc. Also, data must be

stored and consulted at any time prior to its generation. The

software that provides such functionality is the data
exchange middleware, which is a key concept in the

architecture. Another key concept is the adapter module
which assists the middleware in contacting external

devices and retrieving the information from them or

modifying available setpoints. For example, an adapter for

a smart battery might be used to get information from the

battery state and to change the charging schedule. This

functionality is used by algorithms through the API

provided by the data exchange middleware. From the point

of view of the algorithm there is not external device, only

pieces of data that can be written or set.

DATA EXCHANGE MIDDLEWARE DESIGN
The ebalance-plus system uses a middleware framework

that allows the participants to communicate, exchange and

store information. The framework stores data in tuple

space structures which allows to implement a variety of

logical structures that can contain all the information

necessary to identify a value, its description, source, and

time of creation. The tuple space is accessed by creating

variables that can be written, read, or removed. Each

variable is further divided into owner spaces. Operations

on variables are checked against defined access control

policies. By default, each owner can control only their own

data. It is possible to grant or revoke permissions to change

the default permissions. The variables concept

implemented by the framework varies slightly from the

general understanding of a variable. The first difference is

that by default, each value written to the variable is stored

as a separate entry. The second is that data stored in a

single variable can have multiple owners. The third

difference is that a variable can have multiple fields that

are defined when creating the variable. For example, it is

possible to create a weather variable that contains fields

such as temperature, humidity, or wind. Then, owners can

store and share their weather information as they please.

The architecture of the framework follows a distributed

approach. It allows the participants to store data close to

the locations where the data is produced and/or where it

might be consumed in order to be processed. The

communication is secured through public key

infrastructure (PKI).

The framework defines the Data Interface channel that is

responsible for establishing a secure and transparent

channel for communication between clients and a

middleware server instance. The Data Interface channel is

available as a library either in Java or Python. In the

context of the middleware framework, clients that use the

library to communicate and implement functionalities, are

referred to as services (see Figure 2). The services use the

Data Interface to perform actions on data (variables),

permissions and use other system functionalities.

Figure 2 Data exchange middleware services

To protect against malicious services, the middleware

platform implements a utility that is responsible for:

Bootstrapping secure environments for
services.
Running services with adequate privileges.

y

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 26,2023 at 09:52:28 UTC from IEEE Xplore. Restrictions apply.

27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 11214

CIRED 2023 3/5

The middleware servers can communicate directly or

through a framework-provided proxy server (see Figure 3).

If both servers are visible to each other, the communication

can be direct. If the destination server is not visible to the

source server, the communication must be executed

through a proxy server.

Figure 3 Communication between different instances of the
middleware

When two middleware servers communicate, a single

channel is opened. In this case, only the destination server

must be visible. The response is sent through the same

channel as the request.

TOP LEVEL SECURE ARCHITECTURE
The top level of the hierarchy is indeed structured as

depicted in Figure 4. The SuperUnit is the MU on the

highest level of a given deployment. It may be the

TLGMU, but in a setup with many DSO grids connected,

it will be an even higher-level MU that is above the

TLGMUs. Another additional element is the discovery

server that is responsible for maintaining the list of

registered stakeholders and MUs together their respective

certificates, which it also issues. By that it is has the role

of being the certification authority (CA) in the ebalance-

plus system. The last element is the proxy server that is

responsible for buffering requests targeted at management

units located behind network elements, like routers or

firewalls that prevent these MUs to be directly addressed

from outside. Such MUs need then to collect their requests

from the proxy server.

Figure 4 Top level system architecture

SECURE IDENTIFICATION
The hardware, software components and stakeholders

introduced in the previous section need a secure way to

identify themselves. The platform uses the concept of

public key infrastructure (PKI) to introduce security and

privacy in communication between participating

stakeholders. The public key infrastructure ensures the

confidentiality, integrity and authenticity of the messages

exchanged on the middleware platform.

The PKI is based on public key encryption which is a

cryptographic system based on mathematical problems in

which each participant has two keys – public and private.

The public key can be distributed publicly and freely to

everyone willing to communicate with the participant,

while the private key has to be kept as secret as possible

by the client, because it can be used to decrypt a message

that was previously encrypted with a corresponding public

key of the same participant.

Here we deliberately do not specify the security levels in

terms of key length or the technology (cryptography) used,

as these are parameters that shall be specified for a

deployment on the basis of the requirements (standards

and values considered secure. The PKI introduces a

concept of certificate that most importantly contains the

owner information and the public key used in the

encryption process. Each certificate has a corresponding

private key that is kept separate from the certificate and

can be used to decrypt any message that was encrypted

with the corresponding public key. Each actor

participating in the communication is required to have a

valid certificate that was issued (generated and signed) by

a trusted entity. The actors include middleware servers,

services or middleware proxy servers. The certificate can

be used to prove:

a. Identity of the actor participating in the

communication,

b. ownership of the public key.

To be able to issue certificates for the entities, a trusted

entity has to be established. The technical name of such

entity in the PKI is Certification Authority (CA). The

certification authority is responsible for:

a. verifying the identity of participating actors,

b. issuing and storing the certificates for verified

actors,

c. maintaining a list of revoked certificates,

d. providing a mechanism for checking revoked

certificates.

The certification authority has its own certificate with a

separate corresponding private key that is kept secret. Each

actor has a local copy of the certification authority

certificate (authority identification + authority public

key).

When an actor is willing to communicate on the

middleware platform, she must create

a certificate signing request (CSR) which (among others)

contains the actor’s certificate (identity and public key).

The request is forwarded to the certification authority. The

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 26,2023 at 09:52:28 UTC from IEEE Xplore. Restrictions apply.

 27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 11214

CIRED 2023 4/5

authority performs a verification process to confirm the

identity of the requesting actor. When the verification

process is successful, the certification authority uses its

private key to sign the certificate sent in the CSR. A signed

certificate is returned to the requesting actor. Disclosing

private keys of both parties (even to each other) at any step

of the certification process would break the security

enforced by the public key cryptography. Therefore it has

to be clearly stated that the private keys of both the

requesting actor and the certificate authority are not shared

at any step of the certification process and:

 the certification authority uses its private key

only to sign certificates,

 the actor uses its private key only to decrypt

messages that were encrypted with the

corresponding public key.

Without knowing the certification authority’s private key,

it is computationally extremely expensive (for most of

actors/scenarios considered impossible) to create a valid

signed certificate (in acceptable period of time) with

altered owner information. The actors can use this fact to

validate the authenticity of other actors. When attempting

to communicate, both actors must provide their signed

certificates, of which the signature can be verified. Any

modification attempt of data signed in the certificate will

result in signature mismatch which will alert the other

actor and the connection can be rejected. After the

signature verification, both actors can communicate with

the certification authority to check if the certificate is not

revoked.

When the private key of an actor’s signed certificate is

compromised or the actor is behaving maliciously, the

certificate can be revoked which equals to blacklisting the

certificate by the certification authority. A revoked

certificate is no longer considered trusted. Based on the

circumstances, the certificate can be reissued or

cooperation with the malicious actor can be terminated.

The certification authority has no power to physically take

away the certificate from the actor, therefore other actors

have to check whether their communication participant is

identifying itself with a revoked certificate.

The implementation of the security features is modular and

configurable. It allows to quickly update the underlying

mechanisms or chosen cipher suite in case that the

currently chosen option is no longer considered secure.

In the ebalance-plus system the following certificate

classes are issued by the certification authority:

 middleware instance / management unit

certificate,

 stakeholder / user certificate,

 certificate to prove the identity of a service

running on behalf of a given stakeholder

We do not certify the services individually, because the

stakeholder and the service identities together define the

compound identity that defines what the given instance of

a service can access (do) and how.

SECURE BOOTSTRAP AND RUNTIME
The services that make use of the functionalities provided

by the middleware platform are generic applications. By

default, there are no limitations (other than limitations

enforced by the operating system) in actions they may

perform. In cases where a single device runs

a middleware server and services that belong to a single

stakeholder or services that communicate with the

middleware server are run on physically separate hardware

from the server and each other, the threat is minimal.

However, in cases where a single device hosts the

middleware server and services that belong to different

stakeholders, there is a risk of malicious services that have

the possibility to obtain confidential information such as

private keys, databases, passwords or source code of

services that belong to competing stakeholders.

To protect against malicious services, the middleware

platform implements a utility that is responsible for:

a. bootstrapping secure environments for services,

b. running services with adequate privileges.

The utility creates a directory for each stakeholder (Figure

5). Each service that runs on behalf of a stakeholder has a

corresponding sub-directory inside the stakeholder’s

directory. The service directory is a secure space for the

service to store any files necessary to run the service,

including the executable file, certificates, private keys,

databases, or passwords. Based on the scenario, a service

can have access to all service folders of its stakeholder or

only to its own folder. Access to folders of other

stakeholders is denied.

Figure 5 Stakeholder and service separation

The first layer of security is the file system permissions

that provide protection from the outside. For the Java

services, the second layer of security is Java’s Security

Manager (SM) that provides protection from the inside.

The SM allows to define policies for applications

(services) and allows to protect any meaningful resource

and enforce limited or specific usage (Figure 6). A similar

approach will be defined for Python services.

Figure 6 Relation between a service, Access Manager, policies
and protected resources

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 26,2023 at 09:52:28 UTC from IEEE Xplore. Restrictions apply.

 27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 11214

CIRED 2023 5/5

The bootstrapping utility is also used to run the services.

After the secure environment for a service is set up and the

corresponding policies are created, the utility runs the

service executable with the Security Manager enabled that

controls the service behaviour in accordance to defined

policies. The services are never executed without the

assistance of the bootstrapping utility. Doing so could

compromise the system security and render the

implemented measures impractical.

INTEGRATION METHODOLOGY
The services executed on the management units

communicate with each other through the middleware.

Each level implements its level-specific functionalities

that are built on the middleware platform and features it

provides. The evaluation of the middleware platform

presented in this document verifies the correctness and

evaluates the performance of each functionality offered by

the platform within defined certain scenarios that are

present in the example ebalance-plus architecture.

The tests have been carried out by creating Java services

that implement the defined scenarios and output their

results of operations, timestamps and/or delta times

(depending on the test) to evaluate the correctness and

security, or extract data for further processing

(performance evaluation).

During the development phase of the middleware, the

underlying data storage (database) used by the middleware

to save data, was identified to be a significant bottleneck if

the data access is slow. Thus, on the embedded PC

hardware platforms, the performance evaluation considers

two storage options – the usual μSD card and the much

faster USB stick. These two were chosen because of the

significant difference in the read and write speeds and to

investigate the data access speed influence. Each

performance-related test is executed on each storage

option and the results are compared.

Each test is documented within its test card (see Table 1)

that contains the definition of the test scenario, the initial

state requirements and documents the obtained result

along with the description of actions that happened during

the test execution.

Table 1Test definition template

Test #N – title… Short description …
Definition Aim of the test, detailed description

and expected results.

Requirements Any requirements that must be

satisfied before executing the test.

Device(s) Any devices that take part in the test.

Result SUCCESS / FAILURE

Result description The final result of the test, detailed

description of the evaluation.

Comments
(optional)

If applicable, comments to the test or

the result.

CONCLUSION
Smart grids are complex system in which a high number

of heterogeneous devices need to exchange information.

To simplify the way these devices, communicate a data

exchange middleware has been designed in the ebalance-

plus project. The middleware provides a data-centric high-

level programming abstraction based on simple operations

that is used by all actors in the system to hide the

complexity of the underlying architecture and hardware

devices. To integrate external devices/systems within the

middleware an adapter module is used. An adapter module

provides an abstraction over each specific external device

and oversees transforming requests/responses from/to the

middleware/devices. The purpose of this work has been to

present the design and evaluation of the middleware used

in the ebalance-plus platform. As part of the evaluation,

tests have been performed and their execution in order to

evaluate the middleware framework that is used as the

communication platform in the ebalance-plus project. The

correctness and security tests show that the middleware

behaves as defined and in a secure manner.

ACKNOWLEDGEMENT
This research was supported by the European Commission

through the H2020, project ebalance-project grant number

864283.

REFERENCES
[1] Ebrahimy, R., & Pourmirza, Z. (2017, February).

Cyber-interdependency in Smart Energy Systems. In

ICISSP (pp. 529-537)

[2] Savin, V. D. (2022). Cybersecurity Threats and

Vulnerabilities in Energy Transition to Smart Electricity

Grids. In Navigating Through the Crisis: Business,
Technological and Ethical Considerations: The 2020
Annual Griffiths School of Management and IT
Conference (GSMAC) Vol 2 11 (pp. 71-83). Springer

International Publishing.

[3] EbalancePlus project. (2023, January 21). Récupéré sur

https://www.ebalanceplus.eu/project/

[4] Alfalouji Q, Schranz T, Kümpel A, Schraven M, Storek

T, Gross S, Monti A, Müller D, Schweiger G. IoT

Middleware Platforms for Smart Energy Systems: An

Empirical Expert Survey. Buildings. 2022; 12(5):526.

https://doi.org/10.3390/buildings12050526

[5] Madina, C. et al. (2020). Technologies and Protocols:

The Experience of the Three SmartNet Pilots. In:

Migliavacca, G. (eds) TSO-DSO Interactions and

Ancillary Services in Electricity Transmission and

Distribution Networks. Springer, Cham.

https://doi.org/10.1007/978-3-030-29203-4_6

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 26,2023 at 09:52:28 UTC from IEEE Xplore. Restrictions apply.

