
Sustainable Energy, Grids and Networks 34 (2023) 101048

M
a

b

r
o
o
e
g
i
f
T
a
n

o
d
n
c
n

m
1

Contents lists available at ScienceDirect

Sustainable Energy, Grids and Networks

journal homepage: www.elsevier.com/locate/segan

Grey-boxmodeling for hot-spot temperature prediction of
oil-immersed transformers in power distribution networks
E.M.V. Blomgren a,∗, F. D’Ettorre a, O. Samuelsson b, M. Banaei a, R. Ebrahimy a,
.E. Rasmussen a, N.H. Nielsen a, A.R. Larsen a, H. Madsen a

Technical University of Denmark, Department of Applied Mathematics and Computer Science, Lyngby, Denmark
Lund University, Faculty of Engineering, Industrial Electrical Engineering and Automation, Lund, Sweden

a r t i c l e i n f o

Article history:
Received 25 October 2022
Received in revised form 21 February 2023
Accepted 15 April 2023
Available online 21 April 2023

Keywords:
Grey-box modeling
Dynamic transformer rating
Distribution grid flexibility
Thermal model
Data-driven modeling

a b s t r a c t

Power transformers are one of the most costly assets in power grids. Due to increasing electricity
demand and levels of distributed generation, they are more and more often loaded above their rated
limits. Transformer ratings are traditionally set as static limits, set in a controlled environment with
conservative margins. Through dynamic transformer rating, the rating is instead adapted to the actual
working conditions of the transformers. This can help distribution system operators (DSOs) to unlock
unused capacity and postpone costly grid investments. To this end, real-time information of the
transformer operating conditions, and in particular of its hot-spot and oil temperature, is required.
This work proposes a grey-box model that can be used for online estimation and forecasting of the
transformer temperature. It relies on a limited set of non-intrusive measurements and was developed
using experimental data from a DSO in Jutland, Denmark. The thermal model has proven to be able to
predict the temperature of the transformers with a high accuracy and low computational time, which
is particularly relevant for online applications. With a six-hour prediction horizon the mean average
error was 0.4–0.6 ◦C. By choosing a stochastic data-driven modeling approach we can also provide
prediction intervals and account for the uncertainty.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The decarbonization pathways towards a carbon-neutral Eu-
ope are deeply reshaping the power system. Increasing levels
f distributed generation (DG) together with the electrification
f the heating and transport sectors (e.g. use of heat pumps and
lectric vehicles) enable a shift from passive to active distribution
rids. The increased peaks and congestion that come with the
ncreasing demand have resulted in transformers being more
requently loaded above their rated limits, i.e. nameplate ratings.
he overloading could reduce their life expectancy, and also jeop-
rdize the reliability of the entire network. This highlights the
eed for more dynamic grid operations.
Over the past decades, capacity expansion and replacement

f existing grid assets have been the main measures taken by
istribution system operators (DSOs) to keep the network run-
ing smoothly, while handling an increasing number of new
onnections and increasing levels of DG and low-carbon tech-
ologies (e.g. heat pumps). However, the traditional ‘‘connect and
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reinforce’’ operating model is economically and environmentally
costly and takes time to implement. As a result, new methods
to increase transformer capacity, while limiting their aging are
needed to reduce the need for expensive network upgrades.

Power transformers are one of the most expensive assets in
a power grid infrastructure [1]. Loading a transformer beyond its
nameplate capacity increases the leakage flux to the core and out-
side, which heats the metallic parts of the transformer. This might
further affect the internal thermal dynamics as the composition
of the insulation oil might change and gas content increase [2].
As a consequence of the transformer losses (i.e. ohmic winding,
core and stray losses), the temperature increases. If the trans-
former hot-spot (the area with the highest temperature) and oil
temperature rise above the recommended thermal limits (given
by manufacturer or see e.g. [2]), it could increase the insulation’s
aging rate and reduce transformer lifetime [1].

These limits vary according to the transformer type and cool-
ing strategy. According to IEEE Std. C57.12.00–2015 the average
and maximum (hottest-spot) winding temperature rise above
ambient temperature shall not exceed 65 ◦C and 80 ◦C, respec-
tively, at rated kVA when tested in accordance with IEEE Std.
C57.12.90 (i.e. continuous ambient temperature of 40 ◦C for air-
cooled transformers and of 30 ◦C for water-cooled transform-
ers) [3]. However, such constant conditions are quite unusual
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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during normal operation [4], as the environment within which
the transformer is operated constantly changes. When the ambi-
ent temperature is lower than the rated temperature, a higher
load can be allowed without increasing the transformer aging
rate. Therefore, by adapting the transformer rating to its actual
working conditions (i.e. dynamic rating), it is possible to unlock
extra capacity, without violation of the safety margins [5], and
achieve monetary saving by deferring the investment in new
transformers. This strategy is especially useful in colder climates,
since the peak demand coincides with low temperatures [6].

The application of dynamic ratings requires increased aware-
ess of the transformer operating conditions to safely increase
he load above the nameplate rating, without increasing the risk
f failures and safety breaches [7]. More specifically, it requires
nformation on the critical temperatures within the transformer,
amely winding, inner core and other metallic hot-spot temper-
tures as well as top oil temperature. For normal cyclic loading,
.e. normal daily operation, the maximum recommended temper-
tures are 120 ◦C, 130 ◦C, 140 ◦C and 105 ◦C, respectively [2].
hese temperatures can be either monitored by fiber optics or
stimated using transformer thermal models.
The International Electrotechnical Commission (IEC) Standard

0076-7 [2] proposes two different calculation methods for the
ransformer hot-spot temperature: an exponential equation and
difference equation method. Both methods provide the hot-spot
emperature for arbitrarily time-varying load factor and ambient
emperature. However, the former method is more suited to be
sed by manufacturers during tests for the determination of the
ransformer heat transfer parameters, while the latter method is
ore suitable for real time monitoring.
In [8], the IEC Std. 60076-7 thermal model was used for dy-

amic transformer rating for wind energy applications. The model
as applied to an existing transformer to assess its reduction

n lifespan and reliability when overloaded, and on that basis to
rovide design and financial considerations. Results showed that
y applying dynamic transformer rating, the transformer size can
e safely reduced (−20%), thus reducing future investment costs,
r that the wind farm can be expanded up to 60%.
In [7], Jalal et al. proposed an extended version of the calcu-

ation methods proposed in [2], by developing a dynamic rating
lgorithm which also includes measurements of the top oil tem-
erature, tap position, and cooling operation in the evaluation of
he transformer hot-spot temperature and reduction in lifespan
f the insulation.
Similarly, in [9], the differential approach of the IEC Std.

0076-7 was modified to incorporate the dependency of oil vis-
osity and winding loss on temperature. The proposed improved
odel was then validated using temperature measurements from
40 MVA, 21/115 kV, oil forced air forced (OFAF) transformer.
esults showed that the improved model outperformed the ther-
al model proposed by the IEC Std. 60076-7 in estimating the
ot-spot temperature for short-time dynamic loading.
Also Annex G of the IEEE C57.91 Standard provides a thermal

odel that takes in to account the effects on transformer losses of
emperature and oil viscosity. However, the requirement of com-
lex and many input parameters is a downside of the methods
hat rely on the above-mentioned standards, as it complicates
he practical implementation. In view of this, simplified models
ave been proposed as an alternative to the standards’ calculation
ethods.
Arabul and Senol [10] proposed a regression model for hot-

pot temperature calculation based on experimental measure-
ents from fiber optic temperature sensors, while aiming to re-
uce the error rate without increasing input data. Results showed
hat the proposed method provided more accurate lifetime cal-
ulations, by significantly reducing the error in the reduction in
ifespan estimation.
 a

2

Gezegin et al. [11] used both IEC Std. 60076-7 and Annex
of the IEEE C57.91 Standard to develop a new method for

verage winding and hot-spot temperature, which outperformed
he standard methods in their laboratory testing setup.

A further aspect affecting the transformer hot-spot tempera-
ure is the presence of harmonic conditions caused by nonlinear
oads [12]. In [13], Das et al. proposed an extension of the two IEC
td. 60076-7 thermal models that account for unbalanced loading
ith different harmonic distortions in each phase. The model was
hen incorporated into a dynamic transformer rating algorithm to
elp utilities to minimize the risk of transformer failure.
A 3-D finite element model was used by Huang et al. [14] to

nvestigate the impacts of harmonics on the magnetic flux leakage
nd hot-spot temperature rise. Simulation results showed that
igh-order harmonics can produce a hot-spot temperature rise of
round 7 ◦C. A similar approach was used in [15] for evaluating
he transformer losses and estimating the lifetime of oil-filled and
ry-type transformers under harmonic loads. Based on numerical
imulation, Zhang et al. [16] identified a quantitative relationship
or the winding temperature rise under different harmonic con-
ent and harmonic frequency. As in [14], their results showed that
he hot-spot temperature increases from 0.3 ◦C to 18.7 ◦C when
he harmonic content increases from 1% to 10%.

While the works above focused on the development of thermal
odels for real-time monitoring and reduction in lifespan estima-

ion, only a few works in the literature turned their attention on
hermal models for dynamic rating applications with predictive
apabilities. For dynamic rating applications, predictions are a
rucial requirement.
Juarez-Balderas et al. [17] developed a prediction model for

orecasting the transformer hot-spot temperature based on Ar-
ificial Neural Networks (ANN). The model was validated with
oth finite element method (FEM) simulations and experimental
ata, and showed accurate prediction with respect to the latter
average error of 2.71%). However, the model was developed for
edium voltage/low voltage (MV/LV) transformers and tested

ndoors. The model thereby does not consider ambient tem-
erature, while using many inputs and computationally heavy
EM calculations. Therefore, the model has little applicability to
any small MV/LV transformers placed outdoors. Moreover, the
rediction horizon is not reported in the paper, further limiting
he applicability to dynamic operation.

Unlike [17], Bracale et al. [18] proposed a probabilistic stress–
trength framework to predict the probability of load not ex-
eeding the transformer rating, and formulated an alarm-setting
trategy based on this probability. However, the proposed model
nly detects the transformer status, i.e. either overload or not,
ut does not provide any quantitative information regarding the
verloaded status of the transformer. Thus, the model is not well
uited for real-time monitoring and predictions to be used by
grid operator in a dynamic operation setting. Sun et al. [19]
sed a support vector regression method to predict the hot spot
emperature of a distribution grid transformer. The input data
or the method includes the ambient temperature, load rate,
istorical hot spot temperature and cooling fan status. While the
imulations results shows high accuracy of results, its implemen-
ation requires hot spot temperature data and can be applied only
o the dry-type transformers.

Rommel et al. [20] proposed a method to predict hot spot tem-
erature of transformers when limited information is available.
he method uses voltage and current measurement to estimate
osses and proposed a simple virtual twin of the transformer
o estimate the winding hot spot temperature. The virtual twin
s created based on only the transformer nameplate data. The
ethod does not consider the impacts of ambient temperature

nd environmental data such as solar radiation on the results.
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Fig. 1. The proposed general framework of data transactions (solid arrow) and changed power flow (dotted arrow) for dynamic rating of transformers considering
flexible devices.
Zhang et al. [21] developed a prediction model for transformer
inding hot-spot temperature fluctuation based on fuzzy infor-
ation granulation and the chaotic particle swarm optimized
avelet neural network. The model shows a high prediction
ccuracy, but the author suggests more research to make it more
pplicable to engineering practices.
In this context, the transformer winding hot-spot temperature

as been rarely studied for time series prediction [21]. In partic-
lar, stochastic models for distribution transformer temperature
orecasting which take into account prediction of future distur-
ances have to date rarely been investigated. To fill this gap, the
resent paper focuses on presenting a methodology to develop a
ransformer thermal model for temperature prediction by using
tochastic grey-box modeling. The main contribution of this paper
s the development of a thermal model for transformers in power
istribution grids. The novelties are summarized as follows: The
roposed model:

• can provide both estimations and k–step ahead predictions.
Hence, the model can be used for online forecasting, and for
enabling dynamic rating of distribution grid transformers.

• uses a grey-box modeling approach, meaning that the model
accounts for the physics informed and stochastic behavior
in the system. This results in the ability to estimate the
uncertainty in the predictions and laying the ground for a
risk informed dynamic control strategy.

• was developed considering input data accessible through
non-intrusive measurements and a model selection process
that minimizes the amount of input data (and sensors) was
chosen. Thus, the installation required to apply the model
for online forecasting is practical and affordable for existing
transformers in service.

Furthermore, the proposed model is developed based on ex-
erimental data collected during field-trials in the context of the
lexible Energy Denmark (FED) project [22]. This gives the oppor-
unity to investigate and evaluate the transformer temperature
redictions in a real world scenario.
The rest of this paper is structured as follows: Section 2

efines the problem and describes the framework within which
he thermal model will be applied. Next, Section 3 presents the
xperimental setup and data acquisition. Section 4 describes the
rey-box modeling approach and Section 5 presents and discusses

he results. Section 6 concludes the paper.

3

2. Model application framework

The use of dynamic transformer ratings can help DSOs to un-
lock extra capacity at distribution grid level and postpone costly
grid investments. The dynamic rating should be set relative to the
temperature of the transformer, which is the actual limiting factor
for the power flow through the transformer. If the temperature
is below the thermal limit, a higher power transmission can be
allowed. If instead the temperature is above the limit, less power
has to be transmitted to avoid transformer failure and aging.

Fig. 1 shows the proposed operational framework of a
temperature-based dynamic transformer rating (DTR). In this
framework, temperature sensors and power measurement de-
vices monitor the transformer operating conditions. An online
forecasting tool fetches the data from the transformer sensors as
well as the latest environmental data and load forecasts through
APIs. In the online forecasting tool the data is then fed to the
thermal model, giving predictions of the transformer temperature
in a requested time horizon. The DSO can use these predic-
tions along with load forecasts to determine whether more or
less power can be transmitted. The adjustments in power flow
could be done through activation of flexible resources. In such
a scenario, the DSO could request flexibility from a flexibility
operator (for example an aggregator or other actor in a flexibility
market). However, determining how this should be done is not
within the scope of this work. Through the activation of flexible
resources the power flow is changed, and will be visible in the
transformer data collected by the online forecasting tool. The
electricity demand forecasts are also updated accordingly and the
procedure is repeated for each time step.

Successful implementation of this framework requires accu-
rate prediction of the transformer temperature. The goal of this
paper is to develop a thermal model that can be used for both
parameter and state estimations as well as predictions of the
transformer temperature in the online forecasting tool. According
to the transformer manufacturer, monitoring the transformer lid
temperature is sufficient for avoiding critical overloading condi-
tions as it relates to the top oil temperature. Hence, the proposed
model will be used to predict the lid temperature of the trans-
formers. For this purpose we chose the approach of grey-box
modeling. Why this approach is chosen and how it is applied is
further explained in Section 4.

To develop a model that can be seamlessly applied in the
framework of dynamic rating, we aim to find input variables



E.M.V. Blomgren, F. D’Ettorre, O. Samuelsson et al. Sustainable Energy, Grids and Networks 34 (2023) 101048

t

t
b
s
o
p
r
e

3

c
b
l
m
t
a
a
s
e
(
a
r
c
T
a

i
v
t
t
s
1

T

w
o
o
v
c

s
t
d
r
m

Fig. 2. Example of normalized time series data for three-phase current (I3ph), neutral current (IN) ambient temperature and transformer temperature, measured on
he lid. The data has been filtered to a 30 min time resolution.
hat can be measured in a non-intrusive way or that can easily
e fetched using existing APIs. Nevertheless, the input variables
hould be chosen such that acceptable prediction results are
btained. This should result in a solution that is affordable and
ractical, not requiring any interruption in power delivery or
eplacement of grid equipment, which has clear economic and
nvironmental benefits.

. Experimental setup and data acquisition

The installation setup includes two 3-phase 10/0.4 kV oil
ooled transformers at two separate low voltage (LV) grids owned
y a Danish DSO in Jutland. Both transformers are situated in
iving labs (LLs) [23] in the Flexible Energy Denmark project [22],
eaning they are real world grids that are used for testing new

echnologies. Transformer 1 (TRF 1) is rated at 400 kVA and serves
round 170 residential customers. Transformer 2 (TRF 2) is rated
t 200 kVA and serves around 140 residential customers and a
mall industry. Each transformer supplies 5–10 customers with
lectric vehicles (EVs) and 15–20 customers with photovoltaic
PV) panels. Heating occurs through a mixture of heat pumps
nd district heating. The peak load of both transformers is in the
ange of 200 to 250 kVA. TRF 2 has a relatively larger base load,
ompared to TRF 1, which could be due to the industrial load.
he transformers are installed in ventilated metal housings that
re placed outdoors.
Electrical metering devices (EMDs) are installed in a non-

ntrusive way (i.e. magnetic mounting and clamp-on current/
oltage sensors) on the low-voltage side of the two transformers
o collect current, voltage, harmonic and power factor data. Four
emperature sensors are installed inside the metal housing as
hown in Fig. 1. Two sensors measure the housing temperature
0–20 cm below the ceiling (Ttop) and 10–20 cm above the floor

(Tbot), while the other two measure the temperatures of the lid of
the transformer case (Tlid) and of the transformer radiator (Trad).
able 1 summarizes all the measured data.
Thus, the solution is practically simple and can take place

ithout any interruption in power delivery. A sampling rate of
ne second was used; however, measurements can be filtered to
ther resolutions considering the mean value of the per second
alues. The data from the measuring devices is from a third party
ompany, and we fetch the data using an API.
The ambient temperature, wind speed, wind direction and

olar radiation data are retrieved from the open data provided by
he Danish Meteorological Institute (DMI open data) [24]. All the
ata is available at 10 min resolution and can be filtered for other
esolutions, e.g. 30 min resolution, by considering the appropriate
ean value of the 10 min measurements.
4

Table 1
Measured input variables.
Variable Notation Unit

Solar radiation Gh W/m2

Wind speed Φwind m/s
Wind speed South Φwind,S m/s
Wind speed North Φwind,N m/s
Wind speed East Φwind,E m/s
Wind speed West Φwind,W m/s
Ambient temperature Ta ◦C
Transformer lid temperature Tlid ◦C
Transformer radiator temperature Trad ◦C
Housing top temperature Ttop ◦C
Housing bottom temperature Tbot ◦C
Apparent three-phase power S3ph VA
Phase current Iph A
Neutral current IN A

The entire data set available is from November 2021 to June
2022. However, if using the entire data set, there would be sea-
sonal effects in the data that the model would need to describe,
for instance annual variations of the solar radiation. To properly
describe such seasonal effects we would need a minimum of two
years of data and associated parameters estimated with the data
at hand will be unreliable. As an initial step of the model devel-
opment we thus choose a shorter time period, namely November
2021, and thereby we can neglect the seasonal effects. A similar
approach is seen in e.g. [25]. An example of the time series
data for November 1st 2021 to November 8th 2021 is shown in
Fig. 2. The data has been filtered to 30 min time resolution and
this resolution is also used in the model development. This time
resolution was chosen as a compromise between smooth data
where behavior in a longer time scale is seen (typically systems
with high inertia) and a more volatile data set where variation
in a shorter time resolution is seen (typically systems with low
inertia). It is seen in the figure that the peak in transformer
temperature generally occurs after peaks in the other data inputs.
For the model development, the data set was divided into a
training and a testing data set. The training data set is roughly
80% of the entire data set.

4. Modeling approach

The present section describes the stochastic grey-box mod-
eling approach used to develop the thermal model. Grey-box
models are introduced first, together with the related mathemat-
ical framework, followed by a presentation of model structure
and the tested models. Statistical methods are used in the model

selection.
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4.1. Grey-box modeling

Grey-box models have proven to be an effective way to model
he dynamics of complex thermal systems [26]. As their name
uggests, grey-box approaches are at the intersection between
hite box approaches, where the model is derived from the theo-
etical knowledge of the systems (e.g. continuity, momentum and
nergy equations), and black box approaches, where statistics,
nd hence information from data, is used to identify the relation-
hip between the model inputs and outputs, without exploiting
ny knowledge of its internal process. In grey-box models, the
heoretical knowledge of the system is used to suggest a first
roposal for the model structure, i.e. a set of first-order stochastic
ifferential equations. Grey-box models are also data-driven in
he sense that statistics and input data is used to optimize the
arameters of the model [27]. The models are usually written in a
ontinuous-discrete time state-space representation with system
quation and observation equation as follows:

xt = Axtdt + Butdt + σdwt (1)

k = Cxk + ek (2)

where k are points in time, tk, of measurements, x ∈ Rn is the
state vector, u ∈ Rp is the input vector, A ∈ Rn×n, B ∈ Rn×p

and C ∈ Rm×n are the state-space matrices, y ∈ Rm is the
vector of measured outputs, w are standard Wiener processes
with incremental covariance matrix σ ∈ Rn×n, and e ∈ Rm

are the measurement errors, each assumed to be Gaussian white
noise N (0, σ 2

ek ) to the kth measured output. We also assume
that the measurement errors for the different measurements
are uncorrelated. In this work we assume that the Wiener pro-
cesses are independent, and thus, the diagonal covariance matrix
consists of the corresponding variances, σ 2

i , to each ith Wiener
process. Finally, we assume that the Wiener processes and the
measurement error are independent.

In this work, an iterative model-selection strategy similar to
that described by Bacher and Madsen in [26] was adopted to
identify the best dynamic model to estimate and predict the
transformer temperature. It consists in a forward selection pro-
cedure that starts from the simplest model structure, and then
iteratively extends the model by adding new states and/or in-
put variables. Model parameters are found by maximizing the
joint probability of the observed data given the model structure
(see [28] for a detailed discussion). This was done by using the
R-package CTSM-R [27], which is a tool for developing stochastic
state space models in R. Given the maximum likelihood estimates
of the model parameters, each model was then evaluated by
analyzing the corresponding residual auto-correlation function
(ACF) and cumulated periodogram to verify the model assump-
tion of white noise residuals. If the residuals are not white noise
this reflects that the model does not describe all the systematic
variation in the data, and hence the model has to be expanded.
Moreover, the visual inspection of the inputs, outputs, and resid-
uals time series was used to detect what effects the model did not
capture, and hence to provide insights for the subsequent model
extension. Through the expansion of the model, the significance
levels of the estimated parameters were also evaluated, aiming
for a p-value lower than 5%. If higher p-values were detected, the
model was reduced.

Since the transformers considered in this study are located
in two different geographical areas and present different loading
conditions, as discussed in Section 3, two different models have
been investigated.
5

4.2. Model structure: Transformer heat balance

The model structure was derived from the first law of ther-
modynamics. By considering the transformer as a closed system
that exchanges energy with its surroundings, i.e. external envi-
ronment, the dynamics of the transformer temperature directly
follow from the transformer heat balance:

CdT (t) = Φgain(t)dt − Φloss(t)dt (3)

where C and T are the transformer thermal capacity and tem-
perature, respectively, Φgain is the internal heat gains due to the
transformer power losses, and Φloss is the heat losses towards
the surrounding environment, such as those due to convective
heat transfer between the transformer case and external air.
Power losses are due to the dissipative effects that take place
within the transformer, i.e. load and no-load losses, further de-
scribed in 4.2.1. Heat losses towards the environment account
for the heat removed by the transformer cooling system, and the
convective and radiative heat transfer between the transformer
and its surroundings, namely the environment inside the metal
housing. Since the latter is affected by outdoor conditions, the
impact of local weather data on the transformer temperature
was also taken into account. Fig. 3 shows the correlation analysis
among the measured variables (Table 1). It can be seen clearly
that the transformer temperature is correlated to the external
environmental conditions, thus confirming the rationale behind
the inclusion of ambient temperature, wind speed and global
solar radiation in the modeling process. This also agrees with
the IEC Std. 60076-7, stating that environmental factors have a
larger impact on smaller transformers, however, the factors are
not included in the standard calculation methods [2]. A positive
correlation can be noted between the transformer and ambient
temperatures: a lower Ta helps to cool down the transformer,
while a higher Ta reduces the temperature difference driving the
heat transfer, hence the cooling capacity. Conversely, the wind
speed and solar radiation input data are inversely correlated to
the measurements of Tlid (this data behavior and interpretation in
terms of the physical system is further discussed in Section 4.2.2).

4.2.1. Transformer power losses
The no-load losses in the transformer are due to the induced

voltage in the core. Since the voltage generally has much lower
variance than the current, we assumed that the no-load losses
are constant in the transformer. Thereby, we simply modeled the
no-load losses as a constant, ΦNL = b.

Load losses on the other hand depend on the increased load
as:

ΦLL = P + ΦEC + ΦOSL (4)

where P , ΦEC and ΦOSL represent ohmic (I2R), winding eddy
current, and other stray losses respectively [29]. All of these losses
increase as the total current squared increases. In the thermal
model we used only one parameter to model the effect from
the current squared. By this formulation, we assumed that the
contribution from all parameters, such as impedance or separate
effects in (4), can be summarized to one parameter, a (ΦLL ∝

aI23ph).
Moreover, the neutral current will also contribute to the losses

and therefore the temperature of the transformer [29,30]. The
neutral current is linked to the unbalance between the phases
and the third order harmonic components of the phase currents,
because of the 120 degree symmetry between the phases [31]. In
the data collected from the experimental setup it was seen that
the third order harmonic at 150 Hz was the second most apparent
frequency component for the three phase currents, while it was
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Fig. 3. Scatter plots, correlation and data density distribution using data from TRF 1 from November 2021. Here Tlid is the transformer lid temperature, Ta is ambient
emperature, I23ph is three-phase current squared, I2N is neutral current squared and Gh is solar radiation.
Φ

the most apparent in the neutral current. The neutral current
squared was therefore used as a variable to describe losses related
to both third order harmonics as well as unbalanced currents
(ΦLL ∝ cI2N).

In summary, the thermal losses of the transformer can be rep-
resented as a function of three-phase current squared and neutral
current squared representing the load losses and a constant term
representing the no load losses as follows:

Φh = ΦLL + ΦNL = aI23ph + b + cI2N (5)

4.2.2. Environmental factors
The main environmental factors that were taken into account

in the thermal model are ambient temperature, wind and solar
radiation.

The wind should have a cooling effect on the housing in which
the transformer is placed, but could also cause an increase in
temperature if it blocks any ventilation in the housing. Thus,
we allowed the parameters for wind to be both positive and
negative. Both wind speed and wind direction can potentially
affect the thermal model. Investigations showed that including
wind direction in the model did not give significant parameters
while increasing the size of the model. Hence, it was proposed to
model the wind using only one input variable, i.e., wind speed.

The solar radiation should have a heating effect on the hous-
ing, indirectly resulting in impacts on the heat convection be-
tween the temperature in the housing and the temperature of the
6

transformer. This implies less cooling from the surrounding en-
vironment and increased transformer temperature. Fig. 3 shows
no indication of linear dependence between solar radiation and
transformer temperature. Nevertheless, there could be a dynamic
relation between the variables and therefore, another approach
was taken to find a suitable solution to model the solar impact.

The impacts of solar radiation can vary over the day due to
the change in solar azimuth angle or shadow effects from, for
example, buildings or trees. B-splines is a non-parametric method
that can be used to model the impact of solar radiation on for
instance a building in a data-driven approach [32]. Here, B-splines
were used to a model the indirect effect of solar radiation on
the transformer temperature, through the heating of the cable
cabinets. For further details on the aspects of solar gain modeling
using B-splines, the reader is referred to [32]. The B-splines were
applied such that they depend on the time of the day, i.e. the sun
position. To reduce the model and avoid unnecessary parameters,
the B-splines were designed to be active only during the time
intervals for which there is solar radiation, i.e. hours 7 to 16. After
applying the B-splines to the model it was discovered that the
solar radiation had a significant impact on the temperature of
both transformers only between hours 7 to 12. Hence, the interval
was reduced to these hours. Using B-splines, the estimated solar
radiation impact, Φsol, can be formulated as below:

sol(t) =

n∑
scjBj(t)Gh(t) (6)
j=1
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where Bj is the jth spline, ˆscj is the corresponding estimated
parameter to the jth spline and Gh is the solar radiation. Since
the solar radiation should contribute to an increased transformer
temperature we constrained the coefficients, scj, to be positive.
The best results, i.e., significant parameters and improved esti-
mations of the transformer temperature, for TRF 1 were achieved
using a polynomial degree of three and four splines (i.e. n = 4 in
6)). It was also discovered that the second spline is insignificant
nd therefore sc2 was set to a value close to zero. This improved
he process of optimizing the parameters in the model. The low
ignificance of the second spline could be due to a shadow effect
uring the time when the second spline is active. For TRF 2 the
est results were achieved with five splines (i.e. n = 5 in (6)) and
gain by setting sc2 to a value close to zero.

.3. Tested models

Many different models were tested and evaluated in the model
evelopment process. As it is infeasible to present all models
valuated within this paper, we will discuss a representative
ample from the model selection process. This sample includes a
ne state model, a two state model, an extended two state model
nd two three state models, where the latter are the final models
or TRF 1 and 2, respectively. The overall model selection process
ollowed the same steps for both TRF 1 and 2. However, there was
slight difference in identifying the final three state model.

.3.1. One state model
As stated in Section 4.1, we used a forward selection pro-

ess and thus, we started out with a simple model. The initial
odel had one state and ambient temperature and current as

nput variables. This was to represent the simplest model using
he most relevant inputs according to the correlation analysis
n Section 4.2 (solar radiation was ignored here due to reasons
escribed in Section 4.2.2). The system and observation equations
re presented below:

Ti =
1
Ci

(
Φh +

1
Ria

(Ta − Ti)
)
dt + σdw (7)

Tlid,k = Ti,k + ek (8)

where k are points in time, tk, of measurements, Ti is the cor-
responding state to the observed lid temperature Tlid, Ci is the
thermal capacitance at the transformer lid, Ria is the thermal
resistance between the lid and the ambient temperature (includ-
ing the housing) and Φh represents the heat generated by the
transformer losses. In this model the load and no-load losses were
modeled by only using the three-phase current squared as input,
i.e. Φh = aI23ph + b.

The system can also be described by the circuit model in Fig. 4,
where the heat generated by load and no-load losses is modeled
as a current source and the cooling from ambient temperature as
a voltage source.

4.3.2. Two state model
We extended the model by adding a second state for the tem-

perature inside the transformer, Tt. Note that this is an arbitrary
point inside the transformer and does not aim to identify the hot-
spot temperature, but rather model the heat transfer between the
inside of the transformer and the lid, i.e. from Tt to Ti. The system
equations and observation equation are:

dTi =
1
Ci

(
1
Rti

(Tt − Ti) +
1
Ria

(Ta − Ti)
)
dt + σ1dw1 (9)

dTt =
1

(
Φh +

1
(Ti − Tt)

)
dt + σ2dw2 (10)
Ct Rti

7

Fig. 4. RC circuit of the one state model Ti.

Tlid,k = Ti,k + ek (11)

where k are the points in time, tk, of measurements, Tt is the
thermal state within the transformer and generated heat due to
power losses is described by the three-phase current squared
(Φh = aI23ph + b). The Wiener processes are denoted w1 and w2
for (9) and (10), respectively. No extra input variables were added
in this model compared to the one state model, but parameters
for the thermal resistance, Rti, between the states (Tt and Ti) and
capacitance, Ct, for the internal state (Tt) were added. This is also
visualized in the circuit model in Fig. 5.

4.3.3. Extended two state model
In this step, we extended the two state model by adding the

wind speed as input to the model. This step was done to inves-
tigate the impact on the performance of the model that comes
with expanding the model through adding inputs rather than
adding states to the model. The resulting system and observation
equations are as follows:

dTi =
1
Ci

(
1
Rti

(Tt − Ti) +
1
Ria

(Ta − Ti) + ωΦwind

)
dt + σ1dw1 (12)

Tt =
1
Ct

(
Φh +

1
Rti

(Ti − Tt)
)
dt + σ2dw2 (13)

lid,k = Ti,k + ek (14)

where Φwind is the wind speed and ω the corresponding pa-
rameter. All other variables and parameters are described in
Section 4.3.2. The extended two state model is also illustrated in
the circuit model in Fig. 6, where the wind speed acts as a current
source to the transformer temperature state.

4.3.4. Three state model
In the three state model, we added a hidden state for the

temperature, Tb, representing the temperature inside the metal
housing, in which the transformer is placed. It was further ex-
plored whether more environmental or electrical inputs should
be added to the model. Solar radiation was added to the system
equations as an environmental input to increase the performance
of the model as described in Section 4.2.2. Due to different loca-
tions and properties of the two studied transformers, their three
state models are presented separately.

Transformer TRF 1
The three state model for TRF 1 is described by (15)–(18).

dTi =
1
Ci

(
1
Rti

(Tt − Ti) +
1
Rib

(Tb − Ti)
)
dt + σ1dw1 (15)

Tt =
1

(
Φh +

1
(Ti − Tt)

)
dt + σ2dw2 (16)
Ct Rti
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d

T

Fig. 5. RC circuit of the two state model TiTt .
Fig. 6. RC circuit of the two state model TiTt with wind contribution.
Fig. 7. RC circuit of the three state model TiTtTb.
Tb =
1
Cb

(
1
Rib

(Ti − Tb) +
1
Rba

(Ta − Tb) + ωΦwind + Φsol

)
dt

+ σ3dw3 (17)

lid,k = Ti,k + ek (18)

where Rib is the thermal resistance between the state at the lid,
Ti and the state in the housing, Tb. Cb is the thermal capacitance
in the housing, Φsol, is explained in (6) and Φh is described by the
three-phase current squared (Φh = aI23ph + b). All other variables
and parameters are explained in Sections 4.3.2 and 4.3.3. The
thermal model for TRF 1 is also depicted in the thermal circuit
model (Fig. 7).

Transformer TRF 2
For the final three state model, the neutral current turned out

to be a significant input to TRF 2, but not to TRF 1. Thus, for TRF 2,
the neutral current was added to Φh in both the system Eq. (16)
and in the RC circuit in Fig. 7 (i.e. Φh = aI23ph + b + cI2N).

It should also be noted that the input for solar radiation differs
for TRF 1 and 2 as described in Section 4.2.2.

4.4. Temperature estimation and prediction

As described in Section 4.2.1, the power losses are directly
causing heating inside the transformer. Meanwhile, the measur-
ing point is at the lid of the transformer (see Fig. 1) and it is
8

realized that there will be a time delay between the time of the
hot-spot temperature inside the transformer and corresponding
effects seen at the observed transformer lid temperature. This can
also be realized by observing the thermal resistance in the oil as
well as thermal capacitance in the RC circuits in e.g. Fig. 7.

This time delay is important for the understanding of which
prediction horizon of the transformer lid temperature gives an
indication of the core conditions at the current time step. To
investigate this, a cross-correlation analysis between three-phase
current squared and transformer lid temperature was carried out.
Assuming that the leakage flux is heating the metallic parts quite
instantly, the time span between an increase in current squared
and the temperature rise at the lid gives an indication of the
time delay. The three-phase current squared was chosen as the
main explaining variable for the transformer inner temperature,
following the description of transformer losses above and given
that it has a higher correlation than the neutral current as seen in
Fig. 3. The analysis was done by dividing the time series for each
transformer into segments of days. The cross-correlation between
the three-phase current squared and transformer lid temperature
was calculated, while noting the lag at which the maximum value
of the cross correlation was achieved. For TRF 1 the maximum
cross correlation occurred on average at a lag of 5 ± 1.5 time
steps with a 95% confidence interval. For TRF 2 it instead occurred
at 3.5 ± 1 time steps with a 95% confidence interval. Keeping in
mind that each time step is 30 min, this means that the heat
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Fig. 8. Residual analysis for the model selection process for transformer 1. Graphs for ACF are shown in subfigures (a)–(d) and cumulated periodogram in (e)–(h).
The results for the different models are presented as follows: One state model in (a) and (e), two state model in (b) and (f), extended two state model in (c) and
(g), three state model in (d) and (h). Blue dotted lines indicate 95% confidence bands under the assumption that the residuals are white noise.
generated from load losses takes 2.5 ± 0.75 hours to transfer
o the measuring point at the lid for TRF 1 and for TRF 2 it
akes 1.75± 0.5 hours. The difference in time delay between the
wo transformers is most likely due to the smaller size and thus
hermal inertia of TRF 2 (200 kVA), which is half the size of TRF
(400 kVA).
As seen in the model application framework in Section 2

Fig. 1) the DSO should receive predictions such that adjustments
an made to the load of the transformer before the limit is
iolated. Given that predictions at 5 ± 1.5 and 3.5 ± 1 time
teps ahead, relate to the current state inside the transformer,
redictions further ahead are required to support the DSO in the
odel application framework. For this purpose we evaluate the

hermal model at 12 step ahead predictions (6 h), leaving 3.5 and
h respectively to activate flexible resources.

. Results and discussion

In this section we present and analyze the results from the
odels defined in Section 4.3. To avoid repetition, the results are
ostly discussed for TRF 1, and the models of TRF 2 are presented

or the sake of comparison. We further discuss the results in
he context of the model application framework presented in
ection 2.

.1. Residual analysis

Based on the definition of the model in (2), the residuals from
n adequate model should be in the form of normally distributed
hite noise. The residual analysis is done by evaluating the auto
orrelation function (ACF), to ensure that the residuals are inde-
endent, and also by looking at the cumulated periodogram, to
nsure that no frequencies are left in the residuals. Both evalu-
tions aims to identify whether the residuals are white noise or
9

not. If the residuals are not white noise, there are patterns in the
system that the model is not capturing. The principles of using
the residuals for a model evaluation are based on the methods
suggested in [33].

The ACF and cumulated periodograms from the models pre-
sented in Section 4.3 are shown in Fig. 8. It can be seen that the
significant and periodic values in the ACF are gradually decreasing
throughout the model selection process. However, little improve-
ment is seen between the one and two state models, whereas
reduced ACF and a shift in the cumulated periodogram can be
seen for the extended two state model. This means that extending
the model by adding input variables to the model was neces-
sary. It should be noted that adding states such that the input
variables could be described in a physics informed manner was
also required and improvements for the residual analysis were
observed through such extensions. For the presented one and two
state models the ACF has significant periodic values indicating
that there are patterns or behaviors in the system that the models
do not capture. It is further seen in the cumulated periodograms
that some frequencies of the residuals are dominating for these
models. Thus, it cannot be concluded that the residuals are white
noise and neither the one nor the two state models properly
describe the system.

Looking at the residual analysis for the three state model
in (15)–(18) for TRF 1, it can be seen that the ACF (Fig. 8(d))
does not have any significant values. Furthermore, the cumulated
periodogram (Fig. 8(h)) shows no dominating frequencies in the
residuals, but lies within the interval of the 95% confidence inter-
val. Thereby, the three state model gives residuals that are white
noise and we conclude that the three state model provides an
adequate description of the system.

The ACF and cumulated periodogram for the three state model
for TRF 2 show white noise residuals within a 95% confidence
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Table 2
Summary of RSS for 1 and 12 step ahead, mean average error and maximum absolute error for 12
step ahead predictions, log likelihood from models for TRF 1 and TRF 2 using the training data set.
The computation time of estimating the parameters, using a Intel core i7 @ 1.90 GHz, 16 GB RAM
and running on Linux Pop! OS version 21.10, is also presented.
Model RSS RSS Max Log Computation

1 step 12 step MAE error likelihood time

Trf 1: One state 21.6 1035 0.79 3.82 772 11 secs
Trf 1: Two state 21.4 1061 0.81 3.81 718 1.34 mins
Trf 1: Extended two state 16.2 468 0.54 2.54 885 1.84 mins
Trf 1: Three state 8.5 261 0.39 1.69 1273 5.95 mins

Trf 2: One state 50.4 1179 1.06 5.08 −37.6 9 secs
Trf 2: Two state 50.0 1184 1.07 5.05 −34.4 1.34 mins
Trf 2: Extended two state 42.0 654 0.77 4.40 38.9 2.16 mins
Trf 2: Three state 27.6 442 0.63 2.47 212.8 6.37 mins
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Fig. 9. Residual analysis for the three state model for TRF 2. The ACF is shown
in subfigure (a) and cumulated periodogram in (b). Blue dotted lines indicate a
95% significance level.

interval (Fig. 9). Thereby, this three state model with the mod-
ification described in Section 4.3 is identified as the final model
for TRF 2.

5.2. Residual sum of squares and likelihood analysis

We analyzed the residual sum of squares (RSS) values and
mean average error (MAE) to evaluate whether the errors in
the output given the observed data were reduced in the model
selection process. The values of the log likelihood function were
used to compare the models. As shown in Table 2, by moving from
one state models to three state models the values of RSS, MAE
and likelihood values of both transformers are improved, which
confirms an increased performance of the model throughout the
selection process. Comparing the results for both transformers
shows that the proposed three state model for TRF 1 has a better
performance than the three state model for TRF 2. Furthermore,
in the final models a maximum absolute error of 1.69 and 2.47 ◦C
was seen for TRF 1 and TRF 2, respectively, using the training data.
If instead we use the test data, the maximum absolute errors were
5.6 and 3.0 ◦C, respectively. For TRF 2 this is acceptable for the
application of the dynamic rating framework, which is satisfying
given that this transformer is the most critically loaded, with a
peak above the nameplate rating. For TRF 1, the results could be
improved, but it should be mentioned that the MAEs are 0.73 and
0.87 ◦C, respectively, and the high maximum error for TRF 1 is an
exception.

5.3. Estimated parameters

The estimated parameters for the final model are seen in
Table 3 for TRF 1 and 2. Normalized inputs were used for all
10
Table 3
Parameter estimations and standard deviations (Std. Dev.) in the final models
for TRF 1 and 2. All inputs were normalized, except for the initial temperatures,
which are presented in ◦C.
Parameter TRF 1 TRF 2

Estimate Std. Dev. Estimate Std. Dev.

Initial state Ti 28.5 0.07 28.2 0.15
Initial state Tb 22.7 1.2 20.2 1.9
Initial state Tt 52.0 14.2 41.5 5.1
a 2.61 0.30 3.33 0.26
b 0.607 0.111 0.863 0.113
c −− −− 0.158 0.055
Cb 4851 876 2312 403
Ce 412 69 168 40
Ct 413 165 394 79
ln(σ 2

e ) −45.7 0.09 −45.7 0.07
ln(σ1) −25.1 5.3 −20.7 11.3
ln(σ2) −− −− −48.3 26.8
ln(σ3) −5.46 0.12 −4.79 0.14
Rb 3.97 0.79 5.28 0.97
Ria 14.2 1.76 9.76 0.89
Rti 15.8 7.5 8.85 3.08
sc1 3.67 0.78 14.8 3.64
sc3 1.86 0.41 1.10 0.60
sc4 1.03 0.24 1.68 0.58
sc5 −− −− 1.41 0.37
ω −0.817 0.124 −0.902 0.134

variables, except for the temperature variables, which were kept
in measured ◦C. If including the squared neutral current, I2N, for
TRF 1, the estimated parameter, c , obtained a p-value higher
han 0.1. Thus, there is a slight difference in the final model
or the two transformers, meaning that the neutral current is a
ignificant input variable to TRF 2, whereas it was not for TRF
. Noting that the percentage of neutral current to total phase
urrent is quite similar for both transformers (13% for TRF 1 and
2% for TRF 2), it is concluded that a higher harmonic content
n TRF 2 is probably not the reason for this difference. Instead
nother possible reason is that TRF 2 has a loading that is almost
wice as large as the loading condition for TRF 1 (see Section 3).
his could mean that the power related factors have a higher
mpact compared to environmental factors for TRF 2, and hence,
he neutral current is significant during such a loading condition.
ith the reasoning above, this means that when implementing

he model for a transformer with loading at and above nameplate
ating, the neutral current should be included as an input variable
o the model in accordance with the model in Section 4.3.4. This
s to account for the losses due to the neutral current, which is
inked to third order harmonics as well as unbalance between the
hase currents.
Moreover, different numbers of splines were needed for the

wo transformers to model the impact from the solar radiation.
his is reasonable given that different shading and angle to direct
olar radiation could occur depending on the placement of the
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Fig. 10. Predictions of the transformer lid temperature for 5 and 4 time steps ahead, respectively, corresponding to the current state inside the transformer. Black
line — observations, Blue line — predictions, Light blue area — 95% PI. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
transformers. Identification of the splines could potentially to
some extent be automized if the model is applied at large scale. It
was, however, seen for both transformers that the solar radiation
only had an impact during the morning until noon. Seasonal
effects could also be incorporated in the future, as the described
interval, solar spline function and effects from the wind would
probably change throughout the year. However, to investigate
annual seasonal effects, time series of minimum two years are
required. Since the model was developed using the available data
from November 2021, it was not relevant for this study, but is
rather a part of future work. As discussed in Section 3, this time
series length was an active choice given the available data set to
avoid long-term seasonal effects. However, as later reported in
Section 5.4, the data set was sufficient given the selected grey-
box modeling approach to provide good prediction results on the
test data.

Although four different temperature measurements were
available (see Fig. 1), the best results were achieved using only
one of them (Tlid). This further reduces the number of sensors
required in the installation in order to apply the model.

5.4. Application of the proposed method for real time estimation and
prediction

As described in Section 4.4, predictions at 5± 1.5 and 3.5± 1
ime steps ahead relate to the current state inside the trans-
ormer. The time delay is due to the time constants of the system
nd the predictions at these horizons are useful for control room
urposes. Therefore, we evaluated the predictions at horizons
and 4 (rounded off from 3.5) time steps ahead, or 2.5 and
h, respectively. The predictions and PIs can be seen in Fig. 10.
ince Gaussian white noise residuals were proven in the residual
nalysis in Section 5.1, 95% PI’s assuming Gaussian errors could
e computed using CTSM-R. Furthermore, the predictions and
redictions intervals are constructed using collected data for the
nput variables. The predictions follow the observations for most
f the time. Nevertheless, there is an overshoot in the estimation
f the evening peak on the 28th of November. This could be
ue to ‘‘the memory’’ (the derivative of previous time steps)
n the model structure and the previous positive trend in the
emperature time series. Although the prediction intervals do not
ully capture the observations, they give reasonable predictions of
he states. Taking in to account that there is a 95% PI in the graph,
nder and over estimations will occur from time to time. Through
djusting the PIs, the likelihood of having an observation outside
he PIs can be as small as desired. Thereby, the DSO can account
or the uncertainty in their control strategies by adjusting the PIs.
redictions further ahead than the current state are required to
upport the DSO in the model application framework in Fig. 1.
e therefore evaluated 12 step ahead predictions (6 h), giving 3.5
11
and 4 h respectively to adjust the power flow through activating
flexible resources.

The 12 step ahead predictions for the test data set are pre-
sented in Fig. 11. Improvements in the accuracy of the prediction
and the prediction intervals (PIs) can be seen as the model is
expanded from one to three states. For the one and two state
models the PI often misses the observation, which is a sign of
a not well enough implemented model. For the final three state
model for both transformers, the observations are, however, most
of the time inside the PIs. Naturally, some observations will be
outside of the PI due to the 95% significance level of the PIs. Most
importantly for the safety of the grid operation, the PIs capture
the peaks of the temperature, which are the most critical points
for the implementation. Thus, we conclude that the predictions
at this time horizon are fulfilling the requirements for usage in
the model application framework.

Nevertheless, there is also potential for improvements to re-
duce the uncertainty of the model. The model is developed for,
and using data from, normal cyclic operation. However, if the
model should be applied under other operating conditions, such
as long time emergency loading [2], a reduced uncertainty might
be required. For instance, heat run tests could be performed to
establish a model, table or other approaches, that can estimate
the hot-spot temperature given the transformer lid temperature
and loading conditions. This could, for example, be done with
optical sensors, which could also be utilized for model validation.
With the proposed model, the DSO would need to establish some
extra temperature margin that is acceptable from a safety point of
view given the uncertainty. Performing such tests would reduce
this margin as DSOs would have more knowledge on how to
translate the transformer temperature and loading condition to
possible scenarios for the hot-spot temperature.

Furthermore, other improvements, such as adding more states
to the model, could be investigated. This could, for example,
include seasonal effects from solar radiation or having adaptive
parameters. It should, however, be noted that such improvements
in the accuracy could have a negative impact on the computation
time. As seen in Table 2 the computational time increased when
increasing the model order.

5.5. Comparison to state-of-the-art

The proposed method in this paper is based on k–step ahead
predictions. We have especially focused on evaluating the model
at a prediction horizon of 6 h, i.e. k = 12. The method is
designed such that it can be installed on transformers in service
without power delivery interruption through the usage of non-
intrusive measurements. Thereby, the engineering of this method
is considerably different from that found in the-state-of-the-art.
Despite these differences this section discusses and compares the
proposed model to other models found in literature.
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Fig. 11. Prediction analysis for 12 step ahead (6 h) predictions. Subfigures (a)–(c) show predictions for TRF 1 using the one state model (a), extended two state
odel (b) and the final three state model (c). Subfigure (d) shows predictions for TRF 2 using the final three state model. Black line — observations, Blue line —
redictions, Light blue area — 95% PI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In both IEC Std. 60076-7 and Annex G of the IEEE C57.91 Stan-
ard, the thermal models consider the top-oil temperature in the
ank, whereas the proposed method is based on the temperature
easured on the top of the transformer. Although the measured

emperature is linked to the top-oil temperature, the two tem-
eratures cannot be compared directly in quantitative measures.
urthermore, the proposed model is designed to deliver temper-
ture forecasts ahead in time, while the thermal models in the
tandards are deterministic models better suited for monitoring
urposes. For the intended application, the proposed model has
clear advantage as opposed to the standard models, since no

ensors are needed inside the transformer, which allows for a
on-intrusive application in existing DSO grids. This feature is
lso advantageous in comparison to other dynamic rating models
sing in tank measurements as inputs to their models (e.g. [7]).
Some models have been found in literature that allows for
quantitative comparative analysis. For instance, in [34] the

uthors report a root mean squared error (RMSE) of 0.7 ◦C for
heir fuzzy tree method, predicting winding hot-spot tempera-
ure. Another example is [11], which proposes a new thermal
ethod for average winding and hot-spot temperature, which
utperforms the method in Annex G of the IEEE C57.91 Standard.
he authors report squared average errors of 1.26 and 1.36 ◦C for
he two proposed methods as well as maximum errors of 5.54 and
.42 ◦C, respectively. These measures can be compared to results
f the proposed model reported in Section 5.2, which gives MAE
f 0.39 and 0.63 ◦C for TRF 1 and 2, respectively, and maximum
rror of 1.69 and 2.47 ◦C. Nevertheless, the reported errors from
he proposed model are for 6 h ahead predictions whereas the
wo aforementioned studies are rather monitoring or real-time
stimation errors. Furthermore, the two studies consider tem-
eratures which require measurements inside the transformer.
n [19], a very low RMSE of 0.03–0.08 ◦C is reported for their
ot-spot prediction model. However, their proposed method is
or a dry-type transformer and is also not a k–step ahead model,
ut rather a monitoring model. Looking at the existing literature,
t is thus concluded that the results of the proposed model are
ery good in terms of accuracy. However, due to the unique
ngineering setup of the proposed model it is difficult to perform
more detailed comparative analysis.
Moreover, it is relevant to compare the proposed model to

lack-box models in literature. In [17], the authors used an ar-

ificial neural network to predict the temperature distribution I

12
f dry-type transformers and achieves a mean squared error of
.71%. The study uses a large data set and involves 3D data, con-
idering temperature distribution for monitoring purposes and is
ntended for transformer designing purposes, which makes the
tudied case suitable for applying black-box approaches. Another
xample is found in [35], where the authors use nonlinear au-
oregressive neural networks and support vector machines for
hermal modeling of high rating transformers (180–1000 MVA).
he purpose of their study was to monitor the transformer con-
ition and a RMSE of 1.6 ◦C is reported for their final model.
lthough our proposed model partially uses non-parametric and
ata driven methods, it was not relevant to rely on a purely
ata-driven black-box method, since it would require a much
arger data set with longer time series for both model develop-
ent and testing. Instead, the proposed model can be applied
ith shorter time series and parameters in the model can be
e-optimized as more data becomes available. Furthermore, the
entioned studies concerns transformer monitoring purposes,

or which black-box models are suitable as model calibration can
ccur continuously. The purpose of our model is to provide k–
tep ahead predictions as well as estimates of the uncertainty
f the predictions and in this case it is not suitable to design
he model without any physics information. Furthermore, models
ased on partial physical information are often more robust than
ure black-box models [28,36].

.6. Discussion on applicability of the model

To evaluate the applicability of the thermal model, the com-
utation time is a crucial factor. It should be noted that although
apturing non-linear behavior, such as heating from the solar
adiation, the grey-box models are formulated as linear mod-
ls. This reduces the computational burden of optimizing the
arameters in the models. As seen in Table 2, the computation
ime increases with increasing order of the model. It is also seen
hat the time to run and optimize the parameters for the final
odel is approximately six minutes for TRF 1 and 2, respectively.
ith this computation time, the model can be updated on a

egular basis, enabling the usage of the model in grid operation.
ow often the parameters of the model should be updated is a
ompromise between model accuracy and computational burden.

t is possible to update the parameters for every time step given
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that the time resolution is 30 min, but it needs to be evaluated if
that is feasible. The DSO has to weight the gained capacity from
having an accurate thermal model against the economical cost of
updating the models, taking into account how many transformers
in the system the model will be applied to.

Given the analysis of the predictions, accuracy and the compu-
ational time, the model can be applied for online forecasting of
he transformer temperature in distribution grid operation. Due
o the ability to provide predictions the model can be used for
arning and control purposes. The manufacturer of the trans-

ormer in this study also claims that keeping track of the trans-
ormer lid temperature should be enough to safely operate the
ransformer. The engineering setup for model application in-
ludes sensors, which are non-intrusive, load and weather data
nd data communication to collect these data sets. However,
or full implementation of the model application framework, an
lgorithm for the online forecasting tool needs to be developed.
his involves re-optimizing the parameters at an appropriate
requency and to automate the optimization of B-splines (see
ection 5.3) to fully generalize the model.
In this work we have also found a solution that is both afford-

ble and practical in terms of hardware installation. This is due to
he limited number of input variables required to run the models.
eather data can be fetched from the meteorological forecast
rovider (in our case DMI) and current sensors have become more
ffordable in recent years. Furthermore, the model automatically
ncludes environmental and electrical characteristics specific to
he transformer, potentially unlocking even more capacity than
deterministic solution based on standard conditions. Since we
ave a stochastic model, we can also provide PIs accounting for
he uncertainty.

The model could potentially be extended to higher rating
V/LV transformers, provided that data for such transformers
ecomes available. As the leakage flux increases with increas-
ng size, electrical input variables will most likely have a larger
omparative impact and the model structure for TRF 2 would
e recommended for initial model calibration to be reduced if
ecessary.

. Conclusion

In this paper, we proposed a framework for obtaining dy-
amic rating of transformers in power distribution grids. For this
urpose, we developed a thermal model for estimating and pre-
icting transformer temperature. The model was developed using
ata from a real world experimental installation and can be used
or developing an online monitoring and forecasting algorithm for
SOs.
The proposed model is formulated as a grey-box model. This

s a physics-informed data-driven model which is optimized for
ssimilating information from sensors into the model parameters.
urthermore, this approach gives a possibility for providing pre-
iction intervals, and hereby we can specify the risk of violating
he temperatures.

The identified input variables in the proposed thermal models
esult in an affordable and practical solution. The hardware in the
olution can be installed without interruption of power supply
nd without exchanging any equipment.
Furthermore, the proposed thermal model has been proven

o give reasonable estimations and predictions. This enables the
bility to operate the transformer dynamically, unlocking unused
apacity at certain times.
The proposed model also accounts for the electrical and en-

ironmental conditions at a specific transformer. This could give
more specifically applied DTR, unlocking more capacity than a
TR or thermal model based on standard conditions.
13
Moreover, the computational time for the model gives the
option to update the parameters of the model on a regular basis.
This further enables implementation in grid operation as the
accuracy can be maintained.

6.1. Future work

Although the proposed model can be applied for online mon-
itoring and forecasting as it is, it could be complemented or
improved to reduce the uncertainty.

As discussed in Section 5, heat run tests with optical sensors
should be made to establish how the transformer lid temper-
ature and loading conditions affect the hot-spot temperature
and to further validate the model. This could provide a better
insight into the transformer hot-spot temperature. Moreover, in
future studies the model should be evaluated for higher rating
transformers.

Expansions to the model, such as states for seasonal effects,
adaptive parameters or improved local weather forecasts could
be developed. However, caution needs to be taken to not increase
the computation time and burden too much or alternatively find a
workaround that does not require us to rerun the model to update
the parameters. We are planning on collecting data continuously
during the coming years, and within a few years we aim at
formulating an extension of the models which includes seasonal
effects.

Finally, an algorithm that uses the proposed model and input
data to deliver the forecasts online in real time needs to be
developed for full implementation of the concept.
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