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Abstract: Ensuring flexibility and security in power systems requires the use of appropriate man-
agement measures on the demand side. The article presents the results of work related to energy
management in households in which renewable energy sources (RES) can be installed. The main
part of the article is about the developed elastic energy management algorithm (EEM), consisting of
two algorithms, EEM1 and EEM2. The EEM1 algorithm is activated in time periods with a higher
energy price. Its purpose is to reduce the power consumed by the appliances to the level defined by
the consumer. In contrast, the EEM2 algorithm is run by the Distribution System Operator (DSO)
when peak demand occurs. Its purpose is to reduce the power of appliances in a specified time
period to the level defined by the DSO. The optimization tasks in both algorithms are based on the
Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic algorithm. The EEM1 and
EEM2 algorithms also provide energy consumer comfort. For this purpose, both algorithms take
into account the smart appliance parameters proposed in the article: sections of the working devices,
power reduction levels, priorities and enablingof time shifting devices. The EEM algorithm in its op-
eration also takes into account the information about the production of power, e.g., generated by the
photovoltaic systems. On this basis, it makes decisions on the control of smart appliances. The EEM
algorithm also enables inverter control to limit the power transferred from the photovoltaic system
to the energy system. Such action is taken on the basis of the DSO request containing the information
on the power limits. Such a structure of EEM enables the balancing of energy demand and supply.
The possibility of peak demand phenomenon will be reduced. The simulation and experiment results
presented in the paper confirmed the rationality and effectiveness of the EEM algorithm.

Keywords: renewable energy sources; photovoltaic systems; inverter power control; energy demand
control; demand side management and response; smart appliances; elastic energy management
algorithm; GRASP algorithm

1. Introduction

The European Parliament resolution, prepared on the basis of the European Commis-
sion communication [1], obliges European Union Member States to reduce greenhouse gas
emissions. These obligations are, among others, implemented by limiting the carbon diox-
ide emissions by national power systems (NPS). The consequence of this is the introduction
of low-carbon renewable energy sources (RES) in many countries. The variability of RES
power generated, as well as the need for periodic maintenance of conventional power
plants and the occurrence of high power demand at certain peak times and seasons of the
year may cause difficulties in power management in national power systems. Therefore,
ensuring NPS flexibility and security becomes an important problem, which can be ad-
dressed through the use of appropriate activities in the field of Demand Side Management
and Response (DSM&R). DSM&R consists in identifying, assessing and using resources
on the demand side of electricity by their end-use customers (household, commercial
and industrial). This type of operation is only possible in Smart Grid (SG). Especially
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with awell-designed DSM&R, energy consumers can contribute to effectively ensuring
the flexibility and security of NPS and further save money. This requires the cooperation
of Transmission System Operator (TSO) and Distribution System Operator (DSO) in the
scope of:

• properly developed price programs, e.g., Real-time pricing (RTP) and Time-of-Use
(ToU) [2–5],

• load shift services for off-peak periods based on specific delivery methods [6–26].

In many published research results, conducted in various countries, there are in-
dividual approaches to the application of DSM&R at the level of TSO, DSO [6–16] and
the final consumer [13–26]. Some of them relate to the narrow scope of DSM&R. For
example, the paper [6] presents the impact of aggregators as important entities on the
development of DSM&R in Great Britain. Other works concern the use of energy storage
in the implementation of DSM&R at the level of TSO and DSO [7] and in an intelligent
building [17].

On the one hand, a significant part of the publication concerns optimization algo-
rithms used to solve a very important problem, which is DSM&R optimization carried
out at the TSO, DSO and final consumer level. Selected algorithms of this type were
reviewed in [19], dividing them into two categories: classical (linear and non-linear) and
heuristic optimization algorithms (particle swarm optimization—PSO, genetic, simulated
annealing—SA, teaching learning-based optimization—TLBO). Examples of optimization
algorithms used in specific DSM&R solutions, which in most cases are an extension of
the analyses in [19], are presented below. The methodology for assessing the possibilities
of ensuring technological flexibility in the German power grid with a large RES share,
based on a linear algorithm, is presented in [8]. The presented approach focuses on the
solution for TSO and DSO. Peak demand reduction for large energy consumers in Brazil
was presented in another paper [9]. To this end, two models were developed. The statistical
model enables simulation and estimation of peak demand scenarios. The stochastic model
is designed to optimize the peak demand value that will be contracted in future contracts.
The stochastic model was also used to implement DSM&R based thermostatic devices
(fridge–freezer) [10–12]. On the other hand, energy management using a genetic algorithm
for DSO is presented in [13]. This work concerns Chinese micro-networks also containing
RES and energy storage. The developed genetic algorithm is designed to provide DSM&R
while minimizing the cost of purchasing energy and maximizing the use of RES. In [14],
concerning micro-networks also containing RES, an energy management strategy was
proposed based on the response on the demand side, taking into account the application
of the PSO algorithm. The PSO algorithm was also used to minimize the costs of energy
consumption by the household consumer [15]. The objective function takes into account the
expected electricity costs for the next day (RTP with Inclining Block Rate) and satisfaction
with the comfort of using energy by the consumer based on historical data defining the
trends in the work of household consumers. Another DSM&R optimization model based
on heuristic evolutionary algorithm is presented in [20]. It presents the results of simulation
tests for various loads in three areas of services with final consumers.

In addition to the algorithms belonging to the two mentioned groups: classical and
heuristic, there are other solutions known in the literature, presented below. In micro-
networks containing energy storage, DSM&R solution was proposed based on modelling
of state space [16]. This model integrates the structural, time and logical features of
micro-networks to identify and build a wide variety of energy management strategies. The
Demand Response Optimization (DROP) algorithm was used to make optimal decisions for
DSM&R activities in plants equipped with distributed energy resources (DER) [21]. Issues
concerning the use of DSM&R in industrial plants are presented in [22]. Optimal models of
industrial load scheduling in SG environment were determined and methods of solving
optimization models were discussed. An example of using game theory in DSM&R to
smooth the ratio of the peak value to the average power value while rewarding customers
for an accurate load forecast is presented in [17]. In [23] a model is presented taking into
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account hourly profiles of electricity consumption for various household appliances and
their share in annual consumption. The result of this research was to offer households
economic and/or ecological incentives to change consumption at specific times. Similar
activities, but in relation to asmall group of households on a small island are presented
in [24].

The correct operation of DSM&R at national level depends on its implementation at
the final consumer level [25]. In most cases, DSM&R optimization was used for households.
The use of the Internet of Things (IoT) [15] is a favorable step towards introducing DSM&R
in households. In this approach two classifications are distinguished: Energy-efficient
Solutions and Energy Harvesting [26]. A characteristic feature of this solution is collecting
a large data set from the distributed system that requires processing. To this end, the
approaches presented in [27,28] can be used.

The selected publications presented above confirm the need for work in the field
of DSM&R for final consumers. The largest final consumers of energy are industrial
consumers, followed by households. The application of DSM&R to industrial consumers
may be more complex compared to households. This is related to reliability management,
which is definitely more important for industrial consumers [29]. In [19] it was pointed out
that from the group of final consumers analyzed, households respond more in DSM&R
programs. This requires work to develop further DSM&R optimization concepts that will
mobilize households to more actively save energy and take into account their comfort
while implementing DSM&R.

The following conclusions can be drawn from the presented analysis of the literature.
The introduction of a DSM&R optimization algorithm in households based on the work
schedule of individual appliances [15], determined on the basis of historical data specifying
the trends in the work of these appliances, will not ensure optimal implementation of
DSM&R. A better solution is to optimize energy consumption on-line using heuristic
algorithms. This requires the use of two-way communication allowing change of the
operating mode of the appliances planned to be switched on or off at a given moment. On
the other hand, ensuring greater comfort for the individual consumer in the use of energy
receivers during the implementation of DSM&R may take place by taking into account
the parameters of smart appliances [30] and energy generated by RES in the optimization
algorithm. Currently, results of works on appliances of this type are being implemented
in the scope of their intelligent functionality [31], and in the near future implementations
in the field of intelligent energy consumption control should be expected. Both groups of
measures should contribute to increasing the number of households participating in DSM
& R. In households with RES, solutions based on photovoltaic panels and inverters are
most often used (Figure 1).

Some of these households are equipped with power management modules [32,33].
In the first place, they make it possible to use the power generated locally to supply the
appliances. However, the excess of generated power is stored or sent to the NPS. The
inverters also have the option of switching on individual appliances (e.g., boiler, heat
pump). In some countries, situations arise that limit the use of excess power by the NPS.
In that case, the power management module controls the inverter to limit the generated
power (even to zero) [33]. A significant problem of RES is also the dependence of the
produced power on the weather, which can be taken into account in the energy managing
module. A very important problem to be solved is also the mitigation of the peak power
demand phenomenon. The optimization algorithm should take into account, on the basis
of the information sent from the DSO, the reduction of the consumed power taken from
NPS into the household to the indicated value in a specific time interval.
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Figure 1. Power electronic converter in the process of the energy management at the household level.

The main purpose of the article, including the above conclusions, were the devel-
opment of an energy management strategy based on a pricing program (ToU) and an
optimization algorithm taking into account the comfort of energy consumers and the re-
quirements of DSOs to reduce the peak demand phenomenon. The main contribution in
this regard is as follows:

1. Parameters for smart appliances were defined so that the planned comfort of the
energy consumer is maintained when using the energy management algorithm.

2. An algorithm for elastic energy management (EEM) was developed, which takes into
account:

• current functionalities of the power management module in inverters, including
inverter control in terms of limiting power production by RES,

• current power production by RES and current power consumed by enabled
appliances,

• minimization of power consumption costs by appliances,
• DSO request to reduce the load within the given time.

The algorithm respectively runs EEM1 or EEM2 algorithms, implementing the pro-
posed DSM&R solution.

The conducted simulation tests confirmed the correct operation of the EEM algorithm
as well as its rationality and effectiveness. This algorithm is planned to be implemented in
the software part of the inverter management module (Figure 1).

2. Characteristics of Smart Appliances

Smart appliances taking part in the application of the EEM algorithm operating in the
household should have the following properties:

• have specific power demand for a specified period of time,
• can be powered only at certain known intervals,
• the time during which these devices are powered is important for the functioning of

the household.

The group of smart appliances with the properties listed above, whose energy con-
sumption can be managed, include:
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• induction hobs, ovens, microwaves,
• dishwasher,
• washing machine and dryer,
• refrigerators and freezers,
• lighting,
• air conditioning system equipment with heat accumulators, flow and non-flow electric

water heaters (boilers), floor heating,
• electric and hybrid vehicle batteries.

The energy consumption of each consumer results from the parameters of their appli-
ance and the way these are used. For proper operation of the EEM algorithm it is required
to define appropriate appliance parameters. This mainly applies to determining if and
when a given load can be used during power reduction. A very small number of types
of appliances currently used in households have the possibility of gradual reduction of
power. The article proposes the introduction of a work section (WS) in these appliances
for manufacturers of the smart appliances. This will increase flexibility in reducing the
power of such appliances and improve the comfort of their use in the household. The
section should be understood as the phase of the appliance’s work. An example of such
an appliance in which WS occurs can be a washing machine, e.g., prewash, main wash,
spinning, etc. For each WS (Figure 2) there will be independently determined values of
minimum (PA_MIN) and nominal (PA_NOM) power parameters. The manufacturer, based on
their own experience, will determine for each WS whether at any given time the power
reduction from PA_NOM to PA_MIN, with possibly more k levels of its changes, will not have
a negative impact on the task carried out by the smart appliances.
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Figure 2. Example description of smart appliances parameters with the option of using it in the
elastic energy management (EEM) algorithm.

The introduction of a certain number of power reduction levels is possible in smart
appliances intended for maintaining the set air and water temperature. Examples of this
are boilers and electric floor heating, which are heat stores. Limiting the smart appliance
power consumption may, from the user’s point of view, be associated with a slight decrease
in comfort, e.g., a lower water temperature in the boiler or a higher room air temperature
obtained by the air conditioner. However, these slight inconveniences transform into
reduced costs for energy consumed in expensive time periods. From the point of view of
TSO and DSO, such action will increase flexibility and improve NPS security.

Based on the example of smart appliances usage (Figure 2), the EEM algorithm will
be run in: WS2, WS4 and WS5. Only in these WS, the EEM algorithm can choose a new
power value (PA_SEL) in the range (PA_MIN, PA_NOM). WS3 presents a situation in which
the manufacturer of the smart appliances has determined that for the correct operation of
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the smart appliances no reduction of power can occur. In this case PA_NOM = PA_MIN. In
contrast, WS1 may reflect the smart appliances standby time mode. In this case, for most
of the time the smart appliance waits for 24 h to turn it on, power could be reduced to
zero. For example, power reduction in standby time mode could consist in turning off
the LED display indicating the current value of the hour, e.g., in the oven or microwave.
The power of a single LED display, from the point of view of a single household does not
matter much. However, for a larger scale, e.g., city or DSO, running the EEM algorithm
in households to reduce power in WS1 may help to alleviate peak demand. In this way,
distributed processing functionality would be obtained, resulting in a noticeable reduction
in power in the NPS.

The producer will also specify priority values (pr) for each WS. An example of a 5-step
scale of priorities was proposed, which corresponds to the following meanings:

• For smart appliances with pr = 1 and pr = 2 there is always the possibility of power
reduction, because limiting the power of these appliances or their lack of operation
does not cause side effects for the functioning of the household.

• For smart appliances with pr = 3 the power reduction occurs only if for smart appli-
ances with pr = 1 and pr = 2 the power reduction did not bring the intended effects.

• The values of pr = 4 and pr = 5 allow the smart appliances power to be reduced only
in crisis situations for the stability of the NPS.

For loads with pr = 2 and pr = 3, the user decides whether he agrees to reduce power.
Figure 3 shows an example of a situation in which two smart appliances (A1 and A2)

with different priority values were started at different times, t0_A1 and t0_A2.
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Figure 3. Example of the impact of priorities on the operation of the EEM algorithm.

Calling the EEM algorithm at time ti will result in the need to select new PA_SEL
settings for A1 and A2. The order of the smart appliances in which the power reduction to
the PA_SEL level should take place will be determined by the pr values assigned to these
appliances. If prA1 > prA2, then the power reduction will be performed first by the EEM
algorithm for A2. The EEM algorithm will decide on the PA2_sel value, one of several
possible levels, and then turn on A2 with the selected power value.
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Currently, there are a few appliances available on the market (e.g., washing machines,
dryers), in which it is possible to set the start time (ts) of such a device. The ts time setting
is done directly in the device or remotely, e.g., from a tablet or smartphone [30]. This type
of functionality is planned in the EEM algorithm to reduce costs for consumed energy by
shifting turning on smart appliances to off-peak periods. In cases where ts = 0, the smart
appliances are immediately activated by EEM.

It has been proposed that the parameters for each type of smart appliance should be
defined according to the entry

(PA_MIN, PA_NOM, k, pr, ts), (1)

where:

• PA_MIN—a vector containing the minimum power values specified for each WS; if in
the extreme case PA_MIN = 0, it means that the smart appliances can be turned off by
EEM,

• PA_NOM—a vector containing nominal power values specified for each WS,
• K—a vector containing the number of additional power reduction levels in each WS,
• pr—a vector containing priority values for each WS,
• ts—time by which the smart appliances activation can be shifted.

The length of each vector appearing in (1) describing the parameters of a given smart
appliance is equal to the number of defined WS.

It is assumed that the user may overwrite the priority value for each WS. However,
such action will require confirmation of the power reduction performed by the EEM algo-
rithm, which may adversely affect the functions performed by the given smart appliance.

For smart appliances in which the section is not highlighted, the vectors will be
one-piece, and the priority value will then be set only by the user.

3. Elastic Energy Management

The concept of the developed elastic energy management algorithm (EEM) is shown
in Figure 4. The purpose of this algorithm is to ensure the implementation of DSM&R in
households (single-family and multi-family homes) in which RES can be installed, defining
the currently available total power PRES.

The EEM algorithm operates continuously in the first loop, checking if:

• when RES is used, there is an overproduction of power (∆P < 0) relative to the power
consumed by all connected appliances (Ph), according to the dependence

∆P(i) ≥ Ph(i) − PRES(i), (2)

• there was no change in the total power of all switched-on appliances (∆Ph(i)) by the
∆Phys value set in the algorithm according to the dependence

|∆Ph(i)| ≤ ∆Phys, (3)

• when the DSO indicates the need to limit the transfer to the NPS of the excess generated
power by RES to a value not greater than PRES_DSO, at the indicated time (tRES1, tRES2),
information is sent to the inverter about limiting the generated power (Pthreshold) to the
value determined with the dependency

Pthreshold = PRES_DSO(i) − |∆P(i)|, (4)

• no information was sent from DSO about the need to reduce the load Ph(i) to at
least Ph_DSO in the desired time interval (tDR1, tDR2), specified individually for each
household (in this case, status of DSO = 0).
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If any of the conditions

∆P(i) ≥ 0 and DSO = 0, and |∆Ph(i)| ≤ ∆Phys (5)

is not met, then the EEM algorithm goes into operation in the second loop, in which the
parameters of the appliances switched on are read and one of the two algorithms is started:
EEM1 or EEM2. If the status of DSO = 0, then the EEM1 algorithm is launched, the goal of
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which is to reduce the power of appliances in time zones with a higher energy price. In the
case when DSO = 1, the EEM2 algorithm is activated, which reduces the appliance power
to the level in the time interval requested by DSO (tDR1, tDR2) so that the sum of the power
of all switched-on appliances is not greater than Ph_DSO. This functionality of EEM2 is
dictated by the fact that households do not have a clearly defined timetable for switching on
specific appliances with their specific operating functions. The goal of EEM2 is to support
actions taken at the TSO and DSO level in the reduction of peak demand phenomenon,
especially in critical situations for NPS. In order to ensure the effective operation of the
EEM algorithm, instructions for:

• limitation of transferring excess power generated to NPS by RES (PRES_DSO) in a given
time (from tRES1 to tRES2),

• reduction of the power consumed from NPS (Ph_DSO) in a given time (from tDR1 to
tDR2) should be given by DSO well in advance. A detailed description of the operation
of the EEM1 and EEM2 algorithms is presented in the following sections.

The introduction of the condition (3) to the EEM algorithm (Figure 4) solves the
problem of excessive triggering of the EEM1 algorithm (Figure 5). Without this condition,
switching on an appliance, e.g., a refrigerator could modify the power settings for other
appliances. For the next iteration (i) the total power value of all connected Phys(i) appliances
is compared with the Ph(i−1) value from the previous iteration. Examples illustrating the
impact of condition (3) on the launch of the EEM1 algorithm are shown in Figure 5.
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Figure 5. Example of situations where the EEM1 algorithm is run when |∆Ph(i)| ≥ ∆Phys.

The developed EEM algorithm includes two groups of appliances:

• classic appliances that can be controlled only in a binary way (on or off),
• smart appliances whose control method depends on their parameters defined by (1).

3.1. EEM1 Algorithm

First step of the EEM1 algorithm (Figure 6) is the reading of the current time zone
value (t_z) for the tariff applied in the household.
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Figure 6. The EEM1 block diagram.

If t_z = 1 (the time zone with the lowest energy price), then the EEM1 is terminated.
However, when t_z > 1, the EEM1 starts optimizing the power reduction of appliances. For
the EEM1 algorithm, the optimization criterion defines the target function specified by the
following formula:

FEEM = (FDSO + FA − FRES)·
(

1 − USEL − U
U

)
, (6)

where:

• U = 1—is the optimal value of the household’s demand for capacity for its supply in
this household,

• USEL—current value of power demand for its supply, calculated by the EEM1, based
on selected values of appliance power, using the following equation:

USEL =
∑NA

j=1 PA_SELj

∑NRES
i=1 PRESi + Ph_max

, (7)

• FRES, FDSO, FA—components of the objective function related to RES, DSO and A,
defined by formulas:

FRES =
NRES

∑
i=1

CRESi ·PRESi , (8)

FDSO = CDSO·
NA

∑
j=1

PA_SELj , (9)
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FA = CDSO·
NA

∑
j=1

(
PA_NOMj − PA_SELj

)
, (10)

• i, j—indices of appliances (A) currently turned on in the household,
• NRES, NA—number of RES and A in the household,
• CRES—cost of obtaining 1 kWh for a given RES,
• PRES—value of power obtained from a given RES,
• CDSO—cost of purchasing 1 kWh from DSO,
• PA_NOM—nominal value of the power with which A works,
• PA_SEL—power value after reduction for the same A,
• Phmax—maximum sum of the power of all enabled consumers in the household after

the reduction process by EEM1, determined individually for respective time zones by
the energy consumer.

The objective function (6) takes into account the electricity costs and the consumer
comfort resulting from:

• smart appliance parameters defined by the vector (1),
• Phmax power value determined by the consumer,
• U and USEL value, which counteract redundant power reduction.

In the case of excess energy originating from a RES in a given household (∆P ≥ 0),
EEM1 will attempt to use it inside the given household, and in case of its excess, for sale
the energy to the DSO.

In the case when ∆P < 0 or RES are not installed in the household, the task of EEM1
will be to determine the value of the power reduction in the relevant consumers. The power
reduction will be carried out taking into account the values of the parameters, defined by
vector (1), assigned to the appliances accordingly. The power reduction for priority 2 and 3
loads requires the user to interact with the algorithm as part of the “User Confirmation”
subprogram. The user may knowingly allow or reject a power reduction proposal to the
selected PA_SEL level. If, however, the user does not want or cannot respond to such a
message from EEM1, then after a set period of time, automatic consent to power reduction
will occur. The choice of the automatic consent option is based on the assumption that
users are aware of the need to use EEM1.

3.2. EEM2 Algorithm

The block diagram of the EEM2 algorithm is shown in Figure 7. EEM2 shall be
triggered only if the DSO has sent a request to reduce the power of appliances in the
household within a specified period of time (tDR1, tDR2), to a value of at least equal to
Ph_DSO or less.

For EEM2, the target function is also defined by the Equation (6). Due to the different
purpose of this algorithm compared to EEM1, the dependency defined in Equation (7) is
determined as follows

USEL =
∑NA

j=1 PA_SELj

∑NRES
i=1 PRESi + Ph_DSO

, (11)

Based on the objective function (6), taking into account the formula (11), the appliance
power level will be selected to match the level of power reduction of appliances in the house-
hold to the specified Ph_DSO level. With the known time frame of power reduction (tDR1,
tDR2) the EEM2 will also work for smart appliances with a specific value ts > 0 to imple-
ment the shift of their activation beyond the time tDR2. The target function (6) also prefers
solutions that will optimize the use of available RES power for household appliances.
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3.3. Optimization Algorithm

The possibility of occurrence of different power selection combinations for appliances
(PA_SEL) by the proposed algorithms EEM1 and EEM2 causes the realized optimization task
to be classified as anondeterministic polynomial time (NP problem). These are high com-
plexity tasks for which metaheuristic algorithms perform better than classical algorithms,
e.g., [15]. The Greedy Randomized Adaptive Search Procedure (GRASP) algorithm [34,35]
was used to perform optimization tasks in EEM1 and EEM2. This algorithm starts by
creating vertices of graph that determine the possible selection of PA_SEL power setting
for each of the appliances. All vertices of such a graph are connected with each other by
paths. In the first phase of the algorithm’s operation, the set of possible power settings
for each smart appliance is determined in individual iterations (n). This means that for
each selection of settings, the selected vertices are connected by paths and the value of
the objective function is calculated. In the second phase, with the previous assumptions,
it will be possible to resolve the situation in which the smart device would be turned on
(turned off) or even reduce power at a time when there would be several devices with the
same priority. The selection will be determined by the optimization criterion defining the
target function FEEM (6). In this case, due to the minimization of the FEEM function, the
selection of individual PA_SEL power settings will follow. In the PA_SEL settings you will
define what will happen with the given smart appliance: turn on, turn off or modify the
power consumed.

Figure 8 provides examples of simulation test results for EEM1 and EEM2 algorithms
specifying the value of the target function FEEM (6) for each iteration n, defining the power
settings PA_SEL achieved for the smart appliances with the GRASP optimization algorithm.



Appl. Sci. 2021, 11, 1626 13 of 23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 23 
 

the value of the objective function is calculated. In the second phase, with the previous 

assumptions, it will be possible to resolve the situation in which the smart device would 

be turned on (turned off) or even reduce power at a time when there would be several 

devices with the same priority. The selection will be determined by the optimization cri-

terion defining the target function FEEM (6). In this case, due to the minimization of the 

FEEM function, the selection of individual PA_SEL power settings will follow. In the PA_SEL 

settings you will define what will happen with the given smart appliance: turn on, turn 

off or modify the power consumed. 

Figure 8 provides examples of simulation test results for EEM1 and EEM2 algo-

rithms specifying the value of the target function FEEM (6) for each iteration n, defining the 

power settings PA_SEL achieved for the smart appliances with the GRASP optimization 

algorithm. 

 

Figure 8. The FEEM value for individual iterations n for the selection of PA_SEL smart appliances 

power settings as a result of the EEM1 and EEM2 algorithms. 

The test results presented concern three smart appliances, as described by (1): 

• Air conditioner (0; 2.2; 3; 2; 0), 

• Boiler: (0; 1.5; 2; 1; 0), 

• Dishwasher: (0; 2.3; 0. 2; 9), 

involved in the reduction of power. For the air conditioner, three power levels were 

adopted (kA_1 = [0.7; 1.2; 1.7] kW) and for the boiler two additional power levels (kA_2 = [0.5; 

1.0] kW). It was also assumed that the EEM1 algorithm takes into account the ToU tariff 

with three time zones. For all considered cases, the priorities of the smart appliances are 

taken into account by the optimization process. 

In example (a) the EEM1 algorithm started (for a time zone with average energy 

costs t_z = 2) optimization of power reduction at the moment of turning on the air condi-

tioner with a nominal power of P1_NOM = 2.2 kW with the other two appliances turned on 

(P2_NOM = 1.5 kW andP3_NOM = 2.3 kW). The sum of the power consumed by the three ap-

pliances (Ph= 6 kW) was greater than the assumed Phmax = 5 kW value for this time zone. 

For iteration n = 2, the optimization process has been completed, which resulted in the 

boiler power being limited to 1 kW and the air conditioner to 1.7 kW. The sum of the 

power consumed by the three appliances was 5 kW. In example (b), the EEM1 algorithm 

started (for the time zone with the highest energy consumption costs) to optimize power 

reduction when the air conditioner is switched on with the remaining two appliances 

already switched on (as in example a). The sum of the power consumed by all the ap-

pliances (Ph = 6 kW) was greater than the assumed Phmax = 3 kW value for this time zone. 

The consumer did not agree to move the start of the dishwasher from this time zone (t_z = 

3) to the next time zone (t_z = 1) with the lowest energy consumption costs. For iteration n 

Figure 8. The FEEM value for individual iterations n for the selection of PA_SEL smart appliances
power settings as a result of the EEM1 and EEM2 algorithms.

The test results presented concern three smart appliances, as described by (1):

• Air conditioner (0; 2.2; 3; 2; 0),
• Boiler: (0; 1.5; 2; 1; 0),
• Dishwasher: (0; 2.3; 0. 2; 9),

involved in the reduction of power. For the air conditioner, three power levels were
adopted (kA_1 = [0.7; 1.2; 1.7] kW) and for the boiler two additional power levels (kA_2 =
[0.5; 1.0] kW). It was also assumed that the EEM1 algorithm takes into account the ToU
tariff with three time zones. For all considered cases, the priorities of the smart appliances
are taken into account by the optimization process.

In example (a) the EEM1 algorithm started (for a time zone with average energy costs
t_z = 2) optimization of power reduction at the moment of turning on the air conditioner
with a nominal power of P1_NOM = 2.2 kW with the other two appliances turned on (P2_NOM
= 1.5 kW andP3_NOM = 2.3 kW). The sum of the power consumed by the three appliances (Ph
= 6 kW) was greater than the assumed Phmax = 5 kW value for this time zone. For iteration
n = 2, the optimization process has been completed, which resulted in the boiler power
being limited to 1 kW and the air conditioner to 1.7 kW. The sum of the power consumed
by the three appliances was 5 kW. In example (b), the EEM1 algorithm started (for the time
zone with the highest energy consumption costs) to optimize power reduction when the air
conditioner is switched on with the remaining two appliances already switched on (as in
example a). The sum of the power consumed by all the appliances (Ph = 6 kW) was greater
than the assumed Phmax = 3 kW value for this time zone. The consumer did not agree to
move the start of the dishwasher from this time zone (t_z = 3) to the next time zone (t_z = 1)
with the lowest energy consumption costs. For iteration n = 12, the optimization process
has been completed, as a result of which the boiler was switched off and the power of the
air conditioner was limited to 0.7 kW. In examples (c) and (d), the EEM2 algorithm began
reducing power on the DSO request (in the evening time zone t_z = 3 with the highest
energy consumption costs) to a power consumption level of not greater than Ph_DSO = 1
kW in the time interval tDR1 = 17:30 and tDR2 = 18:30. Example (c) applies to the situation
when at 17:30 only the boiler was on. For iteration n = 3, the optimization process was
completed, as a result of which the boiler power was limited to 1 kW. Whereas example (d)
concerns the situation of inclusion at 18:08 air conditioner with a boiler on and reduced
power to 1 kW. For iteration n = 3, the optimization process was completed, as a result of
which the power of the air conditioner was limited to 0.7 kW, and the boiler was turned
off. The presented results indicate that the GRASP algorithm optimizes the selection of
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smart appliances power settings with a small number of iterations. Compared to the PSO
algorithm [15], the GRASP algorithm requires fewer iterations to optimize the selection of
power settings.

4. Simulation Studies of the EEM Algorithm for a Single Household
4.1. Assumptions

Considering that currently a small number of types of intelligent appliances are used
in households, simulation tests of the EEM algorithm were carried out under the following
assumptions:

1. Simulation studies were conducted in an environment developed for the evaluation
of energy management algorithms.

2. Appliance control with EEM algorithm in the scope of DSM & R will only apply to its
activation or deactivation. Practically it can be ensured by using for each appliance a
separate intelligent socket, available on the market, meeting the assumptions of e.g.,
Fibaro Wall Plug [36]. This type of socket also allows the EEM algorithm to obtain
the measurements of the current power consumed by the appliance. It can also, by
highlighting it with an appropriate color, fulfill an information function for the user
about the price level for energy, e.g., green—cheap energy, yellow—expensive energy,
red—very expensive energy.

3. During one day, 10 energy consumers with parameters specified in Table 1 will be
used. For TV, kettle and induction hob, changes in their power over time were
determined on the basis of measurements. For other appliances, their power changes
over time were determined on the basis of [37]. All data were available with an
interval of 1 min.

Table 1. Appliances parameters.

Appliance PA_NOM [kW] PA_MIN [kW] pr ts [h]

Turned on and off by appropriate automation systems to maintain the set temperature value or
turned off by EEM

air conditioner 2.2 0 2 0
boiler 1.5 0 1 0
fridge 0.06 0 3 0

Enabled or disabled by the user or EEM

dishwasher 0.06 ÷ 2.3 * 0 2 9
dryer 0.06 ÷ 2.3 * 0 2 19

induction hob 0.7 ÷ 3.0 * 0 5 0
kettle 2.0 0 5 0

microwave 0.1 ÷ 2.3 * 0 4 0
TV 0.1 0 4 0

washing machine 0.3 ÷ 2.3 * 0 2 19
* PA_NOM—depending on the subprogram performed by the appliance.

4. ∆Phys = 0.2 kW.
5. Appliances for which ts > 0 will be able to be switched on with a time offset from 0

to ts.
6. In the household under analysis, the ToU price program operates with three time

zones (t_z) and energy charges are applicable in them (Table 2). This tariff applies
throughout the year. On weekends and holidays the time zone t_z = 1 applies.
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Table 2. ToU pricing program design for individual t_z.

t_z Price per Energy Duration t_z

1 0.27 PLN/kWh from 00 to 07 or from 21 to 24
2 0.51 PLN/kWh from 07 to 10 or from 14 to 17
3 0.91 PLN/kWh from 10 to 14 or from 17 to 21
1 0.27 PLN/kWh Weekends and holidays

7. For the EEM1 algorithm, the following Phmax values were adopted: for t_z = 2 Phmax =
5 kW, and for t_z = 3 Phmax = 3 kW.

8. For the EEM2 algorithm, it was assumed that Ph_DSO = 1 kW, tDR1 = 17:30 and
tDR2 = 18:30.

9. In the household are installed photovoltaic panels (PV) with a total capacity of 2880 W
with inverter equipped with a management module. Data on PV power generation
were determined as of 16 November 2020 [38].

10. PRES_DSO = 5 kW.

4.2. Environment for Evaluation of Energy Management Algorithms

In order to be able to evaluate an energy management algorithm it is necessary to
embed it in an environment that allows revealing the full potential of the algorithm. The
real test sites often do not provide smart appliances or devoted participants in a number
that allows testing of all the desired test scenarios.

A solution for that issue is to create an artificial environment that simulates the users
and their appliances and allows reflecting the electrical phenomena on a chosen level of
detail; for instance, using emulation of the components constituting the electrical grid.

We have such an emulation environment at hand, which also provides an execution
opportunity for the management algorithms that allows reusing these in real deployments.

In this section, we introduce the prosumer block—part of the in-lab Smart Grid
Emulator [39], based on the e-balance energy management platform [40,41], developed in
the e-balance project [42]. Using the Smart Grid Emulator it is possible to create defined test
cases that allow testing the performance and behavior of the implemented algorithms before
heading for a real deployment. The emulator allows defining different grid topologies,
built using connected blocks that represent different elements of the real grid, like the
substations, transmission lines and prosumers. The advantage of this evaluation compared
to pure simulations is that the platform emulates the grid by having real current flows
between the blocks, allowing test scenarios related to the low level grid activities, like cut
wires or shortcuts. It also allows testing algorithm implementations that can directly be
applied in the real grid, within the e-balance platform.

The prosumer block is the most important one from the perspective of evaluating
energy-balancing algorithms that operate on the household level. This block emulates the
grid for customers of any kind. This general block can represent a variety of grid elements
that consume and/or produce energy. It may represent a single household or a DER, but it
may also represent a complex neighborhood on the low voltage or the medium voltagegrid
level. It consists of the energy consuming part and the energy producing part, allowing
the emulationof real life energy generation and consumption dependent on time and
weather conditions. Figure 9 depicts the prototype of the prosumer block. Conducting our
experiments on the prosumer block instead of pure simulations gives us the opportunity to
increase the level of realistic results obtained. It is possible to introduce additional control
signals, like the change human behavior. Additionally, the most important aspect here is
the later possibility of applying our results on a larger scale in a connected emulated grid
with multiple prosumers and other grid components.
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Figure 9. The prototype of the prosumer block.

In the prosumer block the energy consumption and production are separated. They
meet at the junction between the block and the grid. The consuming part of the prototype
consists of a set of switchable resistive loads (main type of load) and a capacitive and
inductive load that can introduce phase shift.This allows emulating not only the active
power, but also the reactive and apparent power introduced by the customer appliances.

The part of the block that produces the energy can represent any kind of energy
production that forces the energy into the grid. The sinus wave for the generated power
can be influenced to emulate a diversity of energy quality scenarios. The energy gen-
erator is currently still under development as we are still working on extending it with
additional features.

Both consumption and production are measured with a smart meter class sensor
node. The voltage and current measurements are further processed to obtain all necessary
parameters like the values of different power kinds, the power factor and the frequency.
The core of the block is the management unit (MU)—a single board computer (SBC)
based on the Beaglebone Black hardware [43] that collects these measurements and runs
the e-balance platform middleware and the evaluated algorithms running on top of the
middleware. Additionally, a switch controlled by the Smart Meter is available and allows
the local logic, the energy supplier or the DSO to disconnect the given customer from the
grid completely.

The emulation platform is a low power one. The management unit uses a single core
Sitara processor [44], running at 1 GHz clock and using 512 MB of RAM. It is also the target
machine for the real deployments.

To provide realistic test conditions, the prosumer block is configured with appliance
configuration files and with user behavior configuration. These two configurations are used
together to generate a live energy profile of the block that controls the energy producing
and consuming elements. This flexible approach allows evaluation of energy management
algorithms under reality-like conditions.

The user behavior and appliance configurations are very important aspects of the
evaluation of energy management algorithms. An appliance configuration is a file (one for
each appliance in the household) that defines the programs (or modes) available on the
appliance and defines the resulting power profile while executing a given program. This
device description file is similar to object oriented programming.

A user behavior file (one for each person in the household) defines the user’s appliance
usage profile. In contrast, this configuration file looks more like a crontab schedule, stating
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the order and periodicity of the usage of the specific programs provided by the appliances.
In order to express the uncertainty of the periodicity, this schedule can be enriched with
randomness. This helps to achieve more human-like results.

Finally, the household configuration file (one file per household) combines the user
and device descriptions. Processing this set of files allows generating the summarized
energy profile of the complete household.

The household configuration allows specifying priorities of the appliance, while
the user configuration schedule allows defining the priorities of the individual program
invocations.

4.3. Results of Evaluation Studies

The evaluation tests were carried out using the prosumer block and were divided into
two groups. In the first group, research was conducted for a household powered only by
NPS. The second group of tests concerns a household powered by NPS and RES.

In the first group the tests consisted of recording in time the power values consumed
by the connected appliances for two cases:

• The appliances were switched on automatically or by users during one day taking
into account the properties of the ToU price program (Table 2).

• The appliances were switched on as in the first case, but with the EEM1 algorithms
working (for t_z = 2 and t_z = 3) and EEM2 in hours from 17:30 to 18:30.

For the first case (Figure 10), the appliances (Table 1) were switched on and off by their
respective automation systems, ensuring that the correct air and water temperature were
maintained. Other devices were turned on by users, taking into account their needs and
prices for electricity, specified in the ToU price program (Table 2). The devices were turned
off as a result of the program being terminated or by the user.
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For the second case (Figure 10), the EEM1 algorithm, for t_z = 2, lasting from 7:00 to
10:00, proposed to postpone the start of the washing machine and dryer from 7:15 am 21:00
(t_z = 1). This proposal was accepted by the user. In the same time zone at 9:15, when the
boiler (8:42) was turned on earlier and the dishwasher (9:06) sooner, the air conditioner
was reported to work. This meant exceeding Phmax = 5 kW. For the period of turning on
the air conditioner, the EEM1 algorithm turned off the boiler, which is assigned a lower
priority than the air conditioner and dishwasher. For t_z = 3 at 10:00, the dishwasher was
reported to work with the air conditioner and boiler already on, which meant exceeding
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Phmax = 3 kW. EEM1 proposed postponing the start of the dishwasher to 16:26 (t_z = 2),
which was accepted by the user. At 10:15 the air conditioner was reported to work, which
caused the boiler to be turned off by EEM1. The boiler automatically turned on again at the
end of t_z = 3. At other times t_z = 3 EEM1 did not interfere with the operation of the air
conditioner and refrigerator, because the value of Phmax = 3 kW was not exceeded. In zone
t_z = 2, lasting from 14:00 to 17:00 and from 17.00 to 17.30 (t_z = 3) there was no interference
from EEM1, because the total power of the appliances switched on at any time did not
exceed the value of Phmax = 5 kW. The EEM2 algorithm worked at t_z = 3, minimizing the
power consumed by the appliances from 17:30 to 18:30 so that the power consumed during
this time by the consumers’ appliances switched on is not greater than Ph_DSO = 1 kW.
Minimization of power consumed during this period of time was associated with turning
off the boiler and blocking the re-activation of the boiler and any other appliance (in this
case, the air conditioner), which would exceed Ph_DSO = 1 kW. During this time, only the
fridge and TV were on. At 18:30 the boiler has been switched on again. From now until
21:00 the EEM1 algorithm worked again, causing the boiler to turn off at 19:08 when the air
conditioner was turned on. At 19:52 the boiler turned off again as a result of turning on the
microwave, kettle and air conditioner in turn. The EEM1 algorithm allowed the boiler to
be switched on again at 20:14. At 20:23 the boiler was turned off by the automation after
reaching the set temperature.

In the second group, simulation tests were carried out for the same defined two cases
as in the first group. In the first case, the appliances were turned on and off in the same
way as in the first group of tests. The power generated by RES (PRES—Figure 11), between
7:05 and 15:30, first supplied the appliances, and its surplus was sent to the NPS. This
allowed reduction of the power consumed from NPS and, at the same time, led to lower
energy costs.
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Figure 11. An example of the course of power consumed by appliances in the household with RES and with the ToU price
program, using the EEM algorithm.

In the second case (Figure 11) the EEM1 algorithm, for t_z = 2 lasting from 7:00 to
10:00, proposed to postpone the start of the washing machine and dryer from 7:15 to 11:18
(t_z = 3). This was due to the sufficient power generation by the RES at that time. This
proposal was accepted by the user. Furthermore, for t_z = 2, the boiler was turned off from
9:15 to 9:19 due to the dishwasher already working and the activation of the air conditioner
at 9:15. Switching off the boiler resulted from the priority value (pr = 1) and exceeding
the adopted value of Phmax = 5 kW (the sum of the power of these appliances is 5.98 kW).
For t_z = 3 at 10:00 a dishwasher was reported to work with the air conditioner and boiler
already switched on. Switching on the dishwasher would result in exceeding the assumed
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value of Phmax = 3 kW for this time zone. Due to sufficient RES power generation, the EEM1
algorithm delayed the start of the dishwasher to 10:40. At 16:16, with the air conditioner
working and the EEM1 kettle on, the boiler was turned off for a period of 1 min. As a
result, the value of Phmax = 5 kW was not exceeded during this time. However, the shift
of the air conditioner to being on from 8:05 p.m.to 8:10 p.m. was due to the kettle and
microwave already being on. On the other hand, the EEM2 algorithm for the assumed
value Ph_DSO = 1 kW turned off the boiler from 5:30 p.m. to 6:30 p.m. and during this
period it blocked the activation of the microwave. During this period, two appliances (TV
and fridge) were switched on.

4.4. Analysis of Test Results

To illustrate the effects of the developed algorithms in a single household, the follow-
ing analysis of energy consumption in a household were carried out using:

• the ToU price program (without EEM),
• the ToU price program and the EEM algorithm,

without and with RES.
The results of these analyses are presented in Table 3, where each analyzed case

contains the value of energy consumed and its costs in each time zone and their sums
per day.

Table 3. Energy consumption (E) and its costs (C) for 1 day in particular t_z from the ToU pricing program without and
with the EEM algorithm.

ToU Pricing Program

without RES

Time zones (t_z) 1 2 3 2 3 1 Sum

without EEM
E1 [kWh] 5.9 5.7 2.9 3.9 4.1 2.1 24.6
C1 [PLN] 1.59 2.91 2.64 1.99 3.73 0.57 13.43

with EEM
E2 [kWh] 5.9 3.4 1.9 5.4 3.9 4.9 25.4
C2 [PLN] 1.59 1.73 1.73 2.75 3.55 1.32 12.67

with RES

without EEM
E3 [kWh] 5.9 4.6 −2.7 3.8 4.1 2.1 17.8
C3 [PLN] 1.59 2.32 −2.50 1.93 3.69 0.56 7.59

with EEM
E4 [kWh] 5.9 2.8 −1.1 3.8 2.3 2.1 15.8
C4 [PLN] 1.59 1.43 −1.01 1.92 2.07 0.56 6.56

The comparison of the analysis of the obtained results of the tests for the first group
(Table 3—without RES) shows that the use of the EEM algorithm resulted in a reduction in
the cost of daily energy consumption by Polish monetary unit PLN 0.76 (−5.6%), despite
an increase in energy consumption by 0.8 kWh (+3.2%). The shifting of switching on of
the washing machine and dryer from t_z = 2 (07:00–10:00) to t_z = 1 (21:00–24:00) had a
significant impact on reducing energy costs. The increase in energy consumption was
caused by the extended operation time of the boiler and air conditioner in their next work
cycle, occurring after their earlier switching off by EEM1. Extending the working time
of these appliances resulted from ensuring the required water and air temperature. On
the other hand, activation of EEM2 ensured the implementation of power reduction with
excess in the desired period of time. Turning off the boiler for a period of 1 h resulted in
the extension of its work time in t_z = 3 and shortening in t_z = 1. During this period, the
EEM2 algorithm also prevented turning on the air conditioner.

However, the comparison of the analysis of the obtained results of the tests for the
second group (Table 3—with RES) shows that the use of the EEM algorithm resulted in a
simultaneous reduction in daily energy consumption by 2 kWh (11.2%) and its costs by
PLN 1.03 (13.6%). It was influenced by the amount of power generated by RES, part of
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which was transferred in the zone t_z = 3 to NPS. This power did not exceed the value of
5 kW reported by the DSO; therefore, there was no reaction of the EEM algorithm to the
limitation of this power by the inverter. When calculating the costs of energy consumption
for the zone t_z = 3, it was assumed that the selling price of the surplus energy from
RES is equal to its purchase in this zone. The use of the EEM algorithm also resulted in
lower delays in the use of the washing machine, dryer and dishwasher, which significantly
increased the comfort of their use by household residents.

The evaluation studies carried out clearly show that the use of RES in the household
has a significant impact on the reduction of daily energy consumption and its costs. This is
indicated by the results of simulation tests (Table 3) for both groups (without and with RES).
If only the ToU tariff is used, the RES application reduces the daily energy consumption by
6.8 kWh (−27.6%) and its costs by PLN 5.84 (−43.5%). On the other hand, the simultaneous
use of ToU and EEM and the use of RES reduce the daily energy consumption by 9.6 kWh
(−37.8%) and its costs by PLN 6.11 (−48.2%).

In the performed evaluation tests of the EEM algorithm, there was a lack of choice of
intermediate values of power levels in the appliances. For example, when operating EEM2
in the time period requested by DSO, the boiler was turned off and the option of switching
on other appliances with a total power greater than Ph_DSO was blocked. If the boiler, as
a smart appliance, had 2 additional power levels defined (as in Section 3.3), then for the
comfort of using hot water at that time, EEM2 would reduce its power to 1 kW. Thus, a
power reduction of 0.5 kW would be achieved in the given time period.

5. Discussion

The EEM algorithm proposed in the article is an on-line algorithm, i.e., for each
moment the value of power consumed from the power grid and RES is analyzed, and the
costs for energy consumed are reduced while ensuring a certain level of consumer comfort.
The algorithm takes into account the presence of appliances and smart appliances. After
a slight modification, the developed algorithm can also work with other price programs,
e.g., RTP.

The evaluation tests which were carried out on the prosumer block show that the
applied GRASP algorithm with a given optimization criterion obtains the most favorable
results of setting the power levels of appliances with a small number of iterations.

The novelty of the EEM algorithm is:

• to increase consumer comfort by introducing additional U and USEL coefficients in the
objective function,

• using smart appliances with a certain number of power levels to be used in its reduc-
tion process and consumer power reduction thresholds (Phmax),

• the ability to reduce power charged by the household to the level of Ph_DSO on demand
DSO to reduce peak demand and excess power generated by RES (PRES_DSO).

The tests confirmed that the proposed EEM algorithm can contribute to a significant
reduction in energy costs; in the analyzed example, about 5.6%, compared to the user’s
independent use of the ToU pricing program only. With RES, the reduction will be much
greater. For the analyzed example, it is around 13.6%. At the same time, this algorithm
performs an educational function, shaping the consumer behavior profile towards the
activation of appliances in the cheapest time zones in order to mitigate the peak demand
phenomenon at a higher level of energy management. The introduction of inverters from
RES provides even greater user comfort in the use of appliances installed in the household.

Furthermore, the introduction of the EEM2 algorithm confirmed the possibilities
of its application to increase the support of actions taken at the DSO and TSO level in
the reduction of peak demand. EEM2 also translates into benefits for household energy
consumers. In addition to the additional slight reduction in energy costs resulting from
the ToU pricing program, there may be remuneration for not using equipment in the time
set by DSO above the set power threshold Ph_DSO. This means that the proposed EEM
algorithm makes it possible to plan energy consumer behavior and to plan energy demand.
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Appliances, which should be intelligent appliances, play an important role in the
energy management process. Manufacturers of such appliances, in addition to being
able to control the EEM algorithm and shift in time, were proposed in the article to
introduce additional parameters related to work sections (WS), power reduction levels (k)
and priorities. This will allow, among others uses, an increase in flexibility in the use of
such appliances.

Further work on the EEM algorithm is expected to take into account the existence
of energy storage in households, including electric cars. Further work on the verification
of other metaheuristic algorithms in order to compare their properties with the GRASP
algorithm is also planned.
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